cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

Showing 1-4 of 4 results.

A373820 Run-lengths (differing by 0) of antirun-lengths (differing by > 2) of odd primes.

Original entry on oeis.org

2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 3, 1, 1, 1, 1, 1, 1, 1, 2, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1
Offset: 1

Views

Author

Gus Wiseman, Jun 22 2024

Keywords

Comments

Run-lengths of the version of A027833 with 1 prepended.

Examples

			The antiruns of odd primes (differing by > 2) begin:
   3
   5
   7  11
  13  17
  19  23  29
  31  37  41
  43  47  53  59
  61  67  71
  73  79  83  89  97 101
 103 107
 109 113 127 131 137
 139 149
 151 157 163 167 173 179
 181 191
 193 197
 199 211 223 227
 229 233 239
 241 251 257 263 269
 271 277 281
with lengths:
1, 1, 2, 2, 3, 3, 4, 3, 6, 2, 5, 2, 6, 2, 2, ...
with runs:
  1  1
  2  2
  3  3
  4
  3
  6
  2
  5
  2
  6
  2  2
  4
  3
  5
  3
  4
with lengths a(n).
		

Crossrefs

Run-lengths of A027833 (if we prepend 1), partial sums A029707.
For runs we have A373819, run-lengths of A251092.
Positions of first appearances are A373827, sorted A373826.
A000040 lists the primes.
A001223 gives differences of consecutive primes, run-lengths A333254, run-lengths of run-lengths A373821.
A046933 counts composite numbers between primes.
A065855 counts composite numbers up to n.
A071148 gives partial sums of odd primes.
For composite runs: A005381, A054265, A068780, A373403, A373404.

Programs

  • Mathematica
    Length/@Split[Length/@Split[Select[Range[3,1000],PrimeQ],#2-#1>2&]//Most]//Most

A373825 Position of first appearance of n in the run-lengths (differing by 0) of the run-lengths (differing by 2) of the odd primes.

Original entry on oeis.org

1, 2, 13, 11, 105, 57, 33, 69, 59, 29, 227, 129, 211, 341, 75, 321, 51, 45, 407, 313, 459, 301, 767, 1829, 413, 537, 447, 1113, 1301, 1411, 1405, 2865, 1709, 1429, 3471, 709, 2543, 5231, 1923, 679, 3301, 2791, 6555, 5181, 6345, 11475, 2491, 10633
Offset: 1

Views

Author

Gus Wiseman, Jun 21 2024

Keywords

Comments

Positions of first appearances in A373819.

Examples

			The runs of odd primes differing by 2 begin:
   3   5   7
  11  13
  17  19
  23
  29  31
  37
  41  43
  47
  53
  59  61
  67
  71  73
  79
with lengths:
3, 2, 2, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 2, 2, ...
which have runs beginning:
  3
  2 2
  1
  2
  1
  2
  1 1
  2
  1
  2
  1 1 1 1
  2 2
  1 1 1
with lengths:
1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 4, 2, 3, 2, 4, 3, ...
with positions of first appearances a(n).
		

Crossrefs

Firsts of A373819 (run-lengths of A251092).
For antiruns we have A373827 (sorted A373826), firsts of A373820, run-lengths of A027833 (partial sums A029707, firsts A373401, sorted A373402).
The sorted version is A373824.
A000040 lists the primes.
A001223 gives differences of consecutive primes (firsts A073051), run-lengths A333254 (firsts A335406), run-lengths of run-lengths A373821.
A046933 counts composite numbers between primes.
A065855 counts composite numbers up to n.
A071148 gives partial sums of odd primes.
For composite runs: A005381, A054265, A068780, A176246, A373403, A373404.

Programs

  • Mathematica
    t=Length/@Split[Length/@Split[Select[Range[3,10000], PrimeQ],#1+2==#2&]//Most]//Most;
    spna[y_]:=Max@@Select[Range[Length[y]],SubsetQ[t,Range[#1]]&];
    Table[Position[t,k][[1,1]],{k,spna[t]}]

A373824 Sorted positions of first appearances in the run-lengths (differing by 0) of the run-lengths (differing by 2) of the odd primes.

Original entry on oeis.org

1, 2, 11, 13, 29, 33, 45, 51, 57, 59, 69, 75, 105, 129, 211, 227, 301, 313, 321, 341, 407, 413, 447, 459, 537, 679, 709, 767, 1113, 1301, 1405, 1411, 1429, 1439, 1709, 1829, 1923, 2491, 2543, 2791, 2865, 3301, 3471, 3641, 4199, 4611, 5181, 5231, 6345, 6555
Offset: 1

Views

Author

Gus Wiseman, Jun 21 2024

Keywords

Comments

Sorted positions of first appearances in A373819.

Examples

			The runs of odd primes differing by 2 begin:
   3   5   7
  11  13
  17  19
  23
  29  31
  37
  41  43
  47
  53
  59  61
  67
  71  73
  79
with lengths:
3, 2, 2, 1, 2, 1, 2, 1, 1, 2, 1, 2, 1, 1, 1, 1, 2, 2, 1, 1, 1, 2, 2, 1, 1, 1, 1, 2, 2, 2, ...
which have runs beginning:
  3
  2 2
  1
  2
  1
  2
  1 1
  2
  1
  2
  1 1 1 1
  2 2
  1 1 1
with lengths:
1, 2, 1, 1, 1, 1, 2, 1, 1, 1, 4, 2, 3, 2, 4, 3,...
with sorted positions of first appearances a(n).
		

Crossrefs

Sorted firsts of A373819 (run-lengths of A251092).
The unsorted version is A373825.
For antiruns we have A373826, unsorted A373827.
A000040 lists the primes.
A001223 gives differences of consecutive primes (firsts A073051), run-lengths A333254 (firsts A335406), run-lengths of run-lengths A373821.
A046933 counts composite numbers between primes.
A065855 counts composite numbers up to n.
A071148 gives partial sums of odd primes.
A373820 gives run-lengths of antirun-lengths, run-lengths of A027833.
For composite runs: A005381, A054265, A068780, A373403, A373404.

Programs

  • Mathematica
    t=Length/@Split[Length/@Split[Select[Range[3,10000],PrimeQ],#1+2==#2&]];
    Select[Range[Length[t]],FreeQ[Take[t,#-1],t[[#]]]&]

A373826 Sorted positions of first appearances in the run-lengths (differing by 0) of the antirun-lengths (differing by > 2) of the odd primes.

Original entry on oeis.org

1, 4, 38, 6781, 23238, 26100
Offset: 1

Views

Author

Gus Wiseman, Jun 22 2024

Keywords

Comments

Sorted positions of first appearances in A373820 (run-lengths of A027833 with 1 prepended).

Examples

			The odd primes begin:
3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47, 53, 59, 61, 67, ...
with antiruns (differing by > 2):
(3), (5), (7,11), (13,17), (19,23,29), (31,37,41), (43,47,53,59), ...
with lengths:
1, 1, 2, 2, 3, 3, 4, 3, 6, 2, 5, 2, 6, 2, 2, 4, 3, 5, 3, 4, 5, 12, ...
which have runs:
(1,1), (2,2), (3,3), (4), (3), (6), (2), (5), (2), (6), (2,2), (4), ...
with lengths:
2, 2, 2, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, ...
with sorted positions of first appearances a(n).
		

Crossrefs

Sorted positions of first appearances in A373820, cf. A027833.
For runs we have A373824 (unsorted A373825), sorted firsts of A373819.
The unsorted version is A373827.
A000040 lists the primes.
A001223 gives differences of consecutive primes, run-lengths A333254, run-lengths of run-lengths A373821.
A046933 counts composite numbers between primes.
A065855 counts composite numbers up to n.
A071148 gives partial sums of odd primes.

Programs

  • Mathematica
    t=Length/@Split[Length /@ Split[Select[Range[3,10000],PrimeQ],#1+2!=#2&]];
    Select[Range[Length[t]],FreeQ[Take[t,#-1],t[[#]]]&]
Showing 1-4 of 4 results.