This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A373844 #9 Jun 21 2024 14:18:28 %S A373844 18,30,50,42,70,98,66,110,154,242,78,130,182,286,338,102,170,238,374, %T A373844 442,578,114,190,266,418,494,646,722,138,230,322,506,598,782,874,1058, %U A373844 174,290,406,638,754,986,1102,1334,1682,186,310,434,682,806,1054,1178,1426,1798,1922,222,370,518,814,962,1258,1406,1702,2146,2294,2738 %N A373844 Triangle read by rows: T(n,k) = A276086(1 + A002110(n) + A002110(k)), 1 <= k <= n, where A276086 is the primorial base exp-function. %C A373844 Triangle giving all products of three primes, of which one is even (2) and two are odd (not necessarily distinct), so that the product is of the form 4m+2. %C A373844 The only terms such that T(n, k) > A373845(n, k) > 1 are 30, 42, 110 at positions T(2,1), T(3,1), T(4,2), and the corresponding terms in A373845 are 6, 14, 38. %H A373844 Antti Karttunen, <a href="/A373844/b373844.txt">Table of n, a(n) for n = 1..10585; the first 145 rows of the triangle</a> %F A373844 For n, k >= 1, T(n, k) = A276086(1+A370121(n, k)). %F A373844 For n, k >= 1, T(n, k) = 2*A087112(n+1, k+1). %e A373844 Triangle begins as: %e A373844 18, %e A373844 30, 50, %e A373844 42, 70, 98, %e A373844 66, 110, 154, 242, %e A373844 78, 130, 182, 286, 338, %e A373844 102, 170, 238, 374, 442, 578, %e A373844 114, 190, 266, 418, 494, 646, 722, %e A373844 138, 230, 322, 506, 598, 782, 874, 1058, %e A373844 174, 290, 406, 638, 754, 986, 1102, 1334, 1682, %e A373844 186, 310, 434, 682, 806, 1054, 1178, 1426, 1798, 1922, %e A373844 222, 370, 518, 814, 962, 1258, 1406, 1702, 2146, 2294, 2738, %e A373844 etc. %o A373844 (PARI) %o A373844 A002110(n) = prod(i=1,n,prime(i)); %o A373844 A276086(n) = { my(m=1, p=2); while(n, m *= (p^(n%p)); n = n\p; p = nextprime(1+p)); (m); }; %o A373844 A373844(n) = { n--; my(c = (sqrtint(8*n + 1) - 1) \ 2, x=A002110(1+n - binomial(c + 1, 2))); A276086(1+(A002110(1+c)+x)); }; %Y A373844 Cf. A002110, A276086, A370121, A373845. %Y A373844 Cf. also A087112, A369979, A373848. %K A373844 nonn,easy,tabl %O A373844 1,1 %A A373844 _Antti Karttunen_, Jun 21 2024