cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A373861 a(n) = Sum_{k=0..n} k^(2*n) * |Stirling1(n,k)|.

This page as a plain text file.
%I A373861 #9 Jun 19 2024 09:28:00
%S A373861 1,1,17,923,107724,22369324,7385651720,3597082257152,2449105468081600,
%T A373861 2238708422118782376,2661994302285967390224,4014423110086784061347592,
%U A373861 7519716937006429200213786240,17194081369411703462470895338272
%N A373861 a(n) = Sum_{k=0..n} k^(2*n) * |Stirling1(n,k)|.
%F A373861 E.g.f.: Sum_{k>=0} (-log(1 - k^2*x))^k / k!.
%t A373861 Unprotect[Power]; Power[0, 0] = 1; Protect[Power]; nmax=13; Range[0,nmax]!CoefficientList[Series[Sum[(-Log[1 - k^2*x])^k / k!,{k,0,nmax}],{x,0,nmax}],x] (* _Stefano Spezia_, Jun 19 2024 *)
%o A373861 (PARI) a(n) = sum(k=0, n, k^(2*n)*abs(stirling(n, k, 1)));
%Y A373861 Cf. A229261, A351183, A373856.
%K A373861 nonn
%O A373861 0,3
%A A373861 _Seiichi Manyama_, Jun 19 2024