This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A373862 #9 Jun 27 2024 16:54:01 %S A373862 3,7,7,1,0,0,9,4,9,1,4,0,0,9,2,3,2,2,6,0,7,9,0,8,1,1,3,7,6,7,7,3,3,8, %T A373862 4,1,2,4,3,5,0,9,3,6,9,9,8,4,2,2,3,1,9,0,7,3,0,0,0,9,4,4,5,9,5,9,1,8, %U A373862 9,2,3,5,5,0,5,6,2,1,7,4,2,9,2,2,9,0,5,2,2,9,5,7,1,7,9,9,3,6,0,5,6,7,4,6,3 %N A373862 Decimal expansion of Sum_{k >= 1} log(k)/(k*sqrt(k+1)). %H A373862 Math StackExchange, <a href="https://math.stackexchange.com/questions/3221376">How do I test for convergence of log(n)/n/sqrt(n+1)</a>, (2019) %F A373862 Equals sum_{l>=0} (-1)^(l+1) (2l-1)!! *Zeta'(3/2+l) /(2l)!!. %e A373862 3.77100949140092... %p A373862 Digits := 120 ; %p A373862 x := 0.0 ; %p A373862 for l from 0 to 600 do %p A373862 x := x+(-1)^(l+1)*doublefactorial(2*l-1)/doublefactorial(2*l)*Zeta(1,3/2+l) ; %p A373862 x := evalf(x) ; %p A373862 print(x) ; %p A373862 end do: # _R. J. Mathar_, Jun 27 2024 %o A373862 (PARI) default(realprecision, 200); sumalt(k=0, (-1)^(k+1) * (2*k)! * zeta'(k+3/2) / (k!^2 * 4^k)) \\ _Vaclav Kotesovec_, Jun 27 2024 %Y A373862 Cf. A131688. %K A373862 nonn,cons %O A373862 1,1 %A A373862 _R. J. Mathar_, Jun 19 2024 %E A373862 More terms from _Vaclav Kotesovec_, Jun 27 2024