cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A373888 a(n) is the length of the longest arithmetic progression of primes ending with prime(n).

Original entry on oeis.org

1, 2, 2, 3, 3, 2, 3, 3, 4, 5, 3, 2, 4, 4, 3, 5, 4, 3, 3, 3, 3, 4, 4, 3, 4, 4, 4, 4, 3, 4, 5, 5, 3, 4, 4, 4, 6, 4, 4, 5, 3, 4, 4, 4, 5, 4, 3, 4, 5, 4, 4, 4, 4, 5, 6, 4, 4, 5, 3, 4, 5, 5, 4, 6, 4, 4, 4, 3, 4, 4, 6, 4, 4, 5, 3, 4, 5, 5, 4, 4, 4, 5, 4, 4, 4, 5, 5, 4, 4, 6, 4, 5, 4, 4, 3, 4, 6, 5, 4
Offset: 1

Views

Author

Robert Israel, Aug 11 2024

Keywords

Comments

a(n) is the greatest k such that there exists d > 0 such that A000040(n) - j*d is prime for j = 0 .. k-1.
The first appearance of m in this sequence is at A000720(A005115(m)).
Conjectures: a(n) >= 3 for n >= 13.
Limit_{n -> oo} a(n) = oo.

Examples

			a(4) = 3 because the 4th prime is 7 and there is an arithmetic progression of 3 primes ending in 7, namely 3, 5, 7, and no such arithmetic progression of 4 primes.
		

Crossrefs

Programs

  • Maple
    f:= proc(n) local s,i,m,d,j;
      m:= 1;
      s:= ithprime(n);
      for i from n-1 to 1 by -1 do
        d:= s - ithprime(i);
        if s - m*d < 2 then return m fi;
        for j from 2 while isprime(s-j*d) do od;
        m:= max(m, j);
      od;
      m
    end proc:
    map(f, [$1..100]);