This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A373913 #14 Jul 29 2024 11:08:30 %S A373913 1,1,1,1,1,1,1,2,10,46,166,496,1288,3004,6437,12888,24464,44728,80428, %T A373913 146320,278104,564929,1225811,2778772,6396236,14620646,32760586, %U A373913 71565796,152344397,316911454,647536777,1308456096,2635130392,5330198752,10896635912 %N A373913 Number of compositions of 8*n into parts 7 and 8. %H A373913 <a href="/index/Rec#order_08">Index entries for linear recurrences with constant coefficients</a>, signature (8,-28,56,-70,56,-28,9,-1). %F A373913 a(n) = A017857(8*n). %F A373913 a(n) = Sum_{k=0..floor(n/7)} binomial(n+k,n-7*k). %F A373913 a(n) = 8*a(n-1) - 28*a(n-2) + 56*a(n-3) - 70*a(n-4) + 56*a(n-5) - 28*a(n-6) + 9*a(n-7) - a(n-8). %F A373913 G.f.: 1/(1 - x - x^7/(1 - x)^7). %t A373913 CoefficientList[Series[1/(1-x-x^7/(1-x)^7),{x,0,40}],x] (* or *) LinearRecurrence[ {8,-28,56,-70,56,-28,9,-1},{1,1,1,1,1,1,1,2},40] (* _Harvey P. Dale_, Jul 29 2024 *) %o A373913 (PARI) a(n) = sum(k=0, n\7, binomial(n+k, n-7*k)); %Y A373913 Cf. A099099, A099131, A107025, A373912. %Y A373913 Cf. A017857. %K A373913 nonn,easy %O A373913 0,8 %A A373913 _Seiichi Manyama_, Jun 22 2024