This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A373917 #39 Sep 09 2024 18:45:31 %S A373917 0,0,0,0,1,2,0,2,0,2,0,0,0,0,0,0,4,2,0,4,2,0,3,6,2,5,1,4,0,2,4,6,0,2, %T A373917 4,6,0,1,2,3,4,5,6,7,8,0,0,0,0,0,0,0,0,0,0,0,10,9,8,7,6,5,4,3,2,1,0, %U A373917 10,8,6,4,2,0,10,8,6,4,2,0,10,7,4,1,11,8,5,2,12,9,6,3 %N A373917 Triangle read by rows: T(n,k) = k*10 mod n, with n >= 1, k >= 0. %C A373917 Each row n encodes a "division graph" used to determine m mod n (where m is an arbitrary nonnegative integer), using the method described in the Numberphile link (see also example). %H A373917 John Tyler Rascoe, <a href="/A373917/b373917.txt">Rows n = 1..150, flattened</a> %H A373917 James Grime and Brady Haran, <a href="https://www.youtube.com/watch?v=Ki-M1DJIZsk">Solving Seven</a>, Numberphile YouTube video, 2024. %e A373917 Triangle begins: %e A373917 n\k| 0 1 2 3 4 5 6 7 8 9 %e A373917 --------------------------------- %e A373917 1 | 0; %e A373917 2 | 0, 0; %e A373917 3 | 0, 1, 2; %e A373917 4 | 0, 2, 0, 2; %e A373917 5 | 0, 0, 0, 0, 0; %e A373917 6 | 0, 4, 2, 0, 4, 2; %e A373917 7 | 0, 3, 6, 2, 5, 1, 4; %e A373917 8 | 0, 2, 4, 6, 0, 2, 4, 6; %e A373917 9 | 0, 1, 2, 3, 4, 5, 6, 7, 8; %e A373917 10 | 0, 0, 0, 0, 0, 0, 0, 0, 0, 0; %e A373917 ... %e A373917 Suppose m = 3714289 and you want to determine m mod 7 (the example shown in the video). %e A373917 Start with the first digit of m (3) and calculate T(7,3 mod 7) = T(7,3) = 2. %e A373917 Add it to the next digit of m (7) and calculate T(7,(2+7) mod 7) = T(7,2) = 6. %e A373917 Add it to the next digit of m (1) and calculate T(7,(6+1) mod 7) = T(7,0) = 0. %e A373917 Add it to the next digit of m (4) and calculate T(7,(0+4) mod 7) = T(7,4) = 5. %e A373917 Add it to the next digit of m (2) and calculate T(7,(5+2) mod 7) = T(7,0) = 0. %e A373917 Add it to the next digit of m (8) and calculate T(7,(0+8) mod 7) = T(7,1) = 3. %e A373917 Add it to the final digit of m (9) and calculate (3+9) mod 7 = 5, which corresponds to 3714289 mod 7. %t A373917 Table[Mod[Range[0, 10*(n-1), 10], n], {n, 15}] %o A373917 (Python) %o A373917 def A373917(n,k): return(k*10%n) # _John Tyler Rascoe_, Jul 02 2024 %Y A373917 Cf. A051127, A106611 (number of distinct terms in each row), A374195 (row sums). %K A373917 nonn,tabl %O A373917 1,6 %A A373917 _Paolo Xausa_, Jun 26 2024