cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A373943 a(n) is the cardinality of the set containing all rational numbers of the form 2 <= m/2^(bigomega(m) - 1) <= n.

This page as a plain text file.
%I A373943 #27 Dec 04 2024 05:49:38
%S A373943 0,1,2,2,4,4,6,7,7,7,10,11,13,13,13,15,18,19,21,22,22,22,24,25,27,29,
%T A373943 30,31,34,35,36,37,38,38,40,41,43,45,47,48,49,50,54,57,57,58,61,62,63,
%U A373943 63,63,65,66,67,67,70,71,74,75,77,79,82,82,84,86,89,91
%N A373943 a(n) is the cardinality of the set containing all rational numbers of the form 2 <= m/2^(bigomega(m) - 1) <= n.
%H A373943 Chai Wah Wu, <a href="/A373943/b373943.txt">Table of n, a(n) for n = 1..10000</a>
%F A373943 a(n) = card{x | x = m/2^(bigomega(m)-1), x<=n}.
%F A373943 a(n) = pi_k(n * 2^(k - 1)), with pi_k(n) as the counting function for k-almost primes and k sufficiently large.
%F A373943 k needs to be at least max(1, floor(log(n/2)/(log(3)-log(2)))) and m = n * 2^(k - 1).
%F A373943 a(n) = A374022(n) + A000720(n).
%F A373943 a(2^n) = A052130(n-1).
%e A373943 a(10) = 7 = card{2, 3, 9/2, 5, 27/4, 7, 15/2}.
%t A373943 z = 100;
%t A373943 k[n_] := Max[1, Floor[Log[3/2, n/2]]];
%t A373943 m[n_] := n 2^(k[n] - 1);
%t A373943 PrimePiK = Table[0, Floor[Log[2, m[z]]], m[z]];
%t A373943 For[i = 2, i <= m[z], i++, PrimePiK[[PrimeOmega[i], i]] = 1]
%t A373943 PrimePiK = Accumulate /@ PrimePiK;
%t A373943 a = Table[PrimePiK[[k[n], m[n]]], {n, z}] (*sequence*)
%t A373943 x = Union@Select[Table[i/2^(PrimeOmega[i] - 1), {i, 1, m[z], 2}], # <= z &] (*set*)
%o A373943 (PARI) nap(n, k) = sum(i=1, n, bigomega(i)==k);
%o A373943 a(n) = my(k=max(1, floor(log(n/2)/(log(3)-log(2))))); nap(n*2^(k-1), k); \\ _Michel Marcus_, Jun 27 2024
%o A373943 (Python)
%o A373943 from math import isqrt, prod
%o A373943 from sympy import primepi, primerange, integer_nthroot
%o A373943 def A373943(n):
%o A373943     if n<=4: return primepi(n)
%o A373943     def g(x,a,b,c,m): yield from (((d,) for d in enumerate(primerange(b,isqrt(x//c)+1),a)) if m==2 else (((a2,b2),)+d for a2,b2 in enumerate(primerange(b,integer_nthroot(x//c,m)[0]+1),a) for d in g(x,a2,b2,c*b2,m-1)))
%o A373943     k = 1
%o A373943     while 3**k<(r:=n<<k-1): k+=1
%o A373943     return int(sum(primepi(r//prod(c[1] for c in a))-a[-1][0] for a in g(r,0,1,1,k))) # _Chai Wah Wu_, Dec 03 2024
%Y A373943 Cf. A000720, A001222, A052130, A374022.
%K A373943 nonn
%O A373943 1,3
%A A373943 _Friedjof Tellkamp_, Jun 23 2024