cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A373946 Number of primitive polynomials of third degree over GF(m) with vanishing quadratic term with m = m(n) = A000961(n), for n >= 2.

This page as a plain text file.
%I A373946 #24 Jul 09 2024 01:55:11
%S A373946 1,1,0,4,3,18,8,16,18,48,48,27,80,48,108,108,72,300,144,224,180,308,
%T A373946 192,336,560,240,648,420,576,540,648,768,1080,1200,912,1360,1008,1352,
%U A373946 1188,1584,960,2340,1620,4410,2112,2432,1980,2952,1560,2592,2025,4592,2448,4872,4576
%N A373946 Number of primitive polynomials of third degree over GF(m) with vanishing quadratic term with m = m(n) = A000961(n), for n >= 2.
%C A373946 Apparently, a(n) = A373514(n) * A000010( 3 * A000961(n) - 3 ) * A025474(n) / 2, for n >= 2.
%H A373946 Martin Becker, <a href="/A373946/b373946.txt">Table of n, a(n) for n = 2..400</a>
%e A373946 For n=5, m=5, there are 20 primitive polynomials over GF(5) of the form x^3+a*x^2+b*x+c. Among these, 4 polynomials have a=0: x^3+3*x+2, x^3+3*x+3, x^3+4*x+2, and x^3+4*x+3. Thus, a(5) = 4.
%o A373946 (PARI)
%o A373946 is_max_o = (x1, x0, m, e)-> {
%o A373946   for(i = 1, #e, if(x1^e[i] == x0, return(0))); x1^m == x0;
%o A373946 }
%o A373946 count_them = (q)-> {
%o A373946   z = ffprimroot(ffgen(q, 'c));
%o A373946   m = q^3 - 1; f = factor(m); d = #f~;
%o A373946   e = vector(d, i, m/f[d + 1 - i, 1]);
%o A373946   co = vector(q - 1, i, z^(i - 1));
%o A373946   r = 0;
%o A373946   for(a = 1, q - 1,
%o A373946     for(b = 1, q - 1,
%o A373946       p = co[1]*x^3 + co[a]*x + co[b];
%o A373946       x1 = Mod(x, p); x0 = x1^0;
%o A373946       if(is_max_o(x1, x0, m, e) && polisirreducible(p), r += 1)
%o A373946     )
%o A373946   );
%o A373946   r;
%o A373946 }
%o A373946 print1(count_them(2));
%o A373946 for(q = 3, 64, if(isprimepower(q), print1(", ", count_them(q))))
%Y A373946 Cf. A000961, A319213, A373514.
%K A373946 nonn
%O A373946 2,4
%A A373946 _Martin Becker_, Jun 23 2024