This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A373946 #24 Jul 09 2024 01:55:11 %S A373946 1,1,0,4,3,18,8,16,18,48,48,27,80,48,108,108,72,300,144,224,180,308, %T A373946 192,336,560,240,648,420,576,540,648,768,1080,1200,912,1360,1008,1352, %U A373946 1188,1584,960,2340,1620,4410,2112,2432,1980,2952,1560,2592,2025,4592,2448,4872,4576 %N A373946 Number of primitive polynomials of third degree over GF(m) with vanishing quadratic term with m = m(n) = A000961(n), for n >= 2. %C A373946 Apparently, a(n) = A373514(n) * A000010( 3 * A000961(n) - 3 ) * A025474(n) / 2, for n >= 2. %H A373946 Martin Becker, <a href="/A373946/b373946.txt">Table of n, a(n) for n = 2..400</a> %e A373946 For n=5, m=5, there are 20 primitive polynomials over GF(5) of the form x^3+a*x^2+b*x+c. Among these, 4 polynomials have a=0: x^3+3*x+2, x^3+3*x+3, x^3+4*x+2, and x^3+4*x+3. Thus, a(5) = 4. %o A373946 (PARI) %o A373946 is_max_o = (x1, x0, m, e)-> { %o A373946 for(i = 1, #e, if(x1^e[i] == x0, return(0))); x1^m == x0; %o A373946 } %o A373946 count_them = (q)-> { %o A373946 z = ffprimroot(ffgen(q, 'c)); %o A373946 m = q^3 - 1; f = factor(m); d = #f~; %o A373946 e = vector(d, i, m/f[d + 1 - i, 1]); %o A373946 co = vector(q - 1, i, z^(i - 1)); %o A373946 r = 0; %o A373946 for(a = 1, q - 1, %o A373946 for(b = 1, q - 1, %o A373946 p = co[1]*x^3 + co[a]*x + co[b]; %o A373946 x1 = Mod(x, p); x0 = x1^0; %o A373946 if(is_max_o(x1, x0, m, e) && polisirreducible(p), r += 1) %o A373946 ) %o A373946 ); %o A373946 r; %o A373946 } %o A373946 print1(count_them(2)); %o A373946 for(q = 3, 64, if(isprimepower(q), print1(", ", count_them(q)))) %Y A373946 Cf. A000961, A319213, A373514. %K A373946 nonn %O A373946 2,4 %A A373946 _Martin Becker_, Jun 23 2024