cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A373949 Triangle read by rows where T(n,k) is the number of integer compositions of n such that replacing each run of repeated parts with a single part (run-compression) yields a composition of k.

This page as a plain text file.
%I A373949 #15 Mar 21 2025 10:12:58
%S A373949 1,0,1,0,1,1,0,1,0,3,0,1,1,2,4,0,1,0,4,4,7,0,1,1,5,6,5,14,0,1,0,6,10,
%T A373949 10,14,23,0,1,1,6,14,12,29,26,39,0,1,0,9,16,19,40,54,46,71,0,1,1,8,22,
%U A373949 22,64,82,96,92,124,0,1,0,10,26,30,82,137,144,204,176,214
%N A373949 Triangle read by rows where T(n,k) is the number of integer compositions of n such that replacing each run of repeated parts with a single part (run-compression) yields a composition of k.
%H A373949 John Tyler Rascoe, <a href="/A373949/b373949.txt">Rows n = 0..130, flattened</a>
%F A373949 G.f.: 1/(1 - Sum_{i>0} (y^i * x^i)/(1 + x^i * (y^i - 1))). - _John Tyler Rascoe_, Mar 20 2025
%e A373949 Triangle begins:
%e A373949    1
%e A373949    0   1
%e A373949    0   1   1
%e A373949    0   1   0   3
%e A373949    0   1   1   2   4
%e A373949    0   1   0   4   4   7
%e A373949    0   1   1   5   6   5  14
%e A373949    0   1   0   6  10  10  14  23
%e A373949    0   1   1   6  14  12  29  26  39
%e A373949    0   1   0   9  16  19  40  54  46  71
%e A373949    0   1   1   8  22  22  64  82  96  92 124
%e A373949    0   1   0  10  26  30  82 137 144 204 176 214
%e A373949    0   1   1  11  32  31 121 186 240 331 393 323 378
%e A373949 Row n = 6 counts the following compositions:
%e A373949   .  (111111)  (222)  (33)     (3111)   (411)   (6)
%e A373949                       (2211)   (1113)   (114)   (51)
%e A373949                       (1122)   (1221)   (1311)  (15)
%e A373949                       (21111)  (12111)  (1131)  (42)
%e A373949                       (11112)  (11211)  (2112)  (24)
%e A373949                                (11121)          (141)
%e A373949                                                 (321)
%e A373949                                                 (312)
%e A373949                                                 (231)
%e A373949                                                 (213)
%e A373949                                                 (132)
%e A373949                                                 (123)
%e A373949                                                 (2121)
%e A373949                                                 (1212)
%e A373949 For example, the composition (1,2,2,1) with compression (1,2,1) is counted under T(6,4).
%t A373949 Table[Length[Select[Join@@Permutations /@ IntegerPartitions[n],Total[First/@Split[#]]==k&]], {n,0,10},{k,0,n}]
%o A373949 (PARI)
%o A373949 T_xy(row_max) = {my(N=row_max+1, x='x+O('x^N), h=1/(1-sum(i=1,N, (y^i*x^i)/(1+x^i*(y^i-1))))); vector(N, n, Vecrev(polcoeff(h, n-1)))}
%o A373949 T_xy(13) \\ _John Tyler Rascoe_, Mar 20 2025
%Y A373949 Column k = n is A003242 (anti-runs or compressed compositions).
%Y A373949 Row-sums are A011782.
%Y A373949 Same as A373951 with rows reversed.
%Y A373949 Column k = 3 is A373952.
%Y A373949 This statistic is represented by A373953, difference A373954.
%Y A373949 A114901 counts compositions with no isolated parts.
%Y A373949 A116861 counts partitions by compressed sum, by compressed length A116608.
%Y A373949 A124767 counts runs in standard compositions, anti-runs A333381.
%Y A373949 A240085 counts compositions with no unique parts.
%Y A373949 A333755 counts compositions by compressed length.
%Y A373949 A373948 represents the run-compression transformation.
%Y A373949 Cf. A037201 (halved A373947), A106356, A124762, A238130, A238279, A238343, A285981, A333213, A333489, A373950.
%K A373949 nonn,tabl
%O A373949 0,10
%A A373949 _Gus Wiseman_, Jun 28 2024