This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A373949 #15 Mar 21 2025 10:12:58 %S A373949 1,0,1,0,1,1,0,1,0,3,0,1,1,2,4,0,1,0,4,4,7,0,1,1,5,6,5,14,0,1,0,6,10, %T A373949 10,14,23,0,1,1,6,14,12,29,26,39,0,1,0,9,16,19,40,54,46,71,0,1,1,8,22, %U A373949 22,64,82,96,92,124,0,1,0,10,26,30,82,137,144,204,176,214 %N A373949 Triangle read by rows where T(n,k) is the number of integer compositions of n such that replacing each run of repeated parts with a single part (run-compression) yields a composition of k. %H A373949 John Tyler Rascoe, <a href="/A373949/b373949.txt">Rows n = 0..130, flattened</a> %F A373949 G.f.: 1/(1 - Sum_{i>0} (y^i * x^i)/(1 + x^i * (y^i - 1))). - _John Tyler Rascoe_, Mar 20 2025 %e A373949 Triangle begins: %e A373949 1 %e A373949 0 1 %e A373949 0 1 1 %e A373949 0 1 0 3 %e A373949 0 1 1 2 4 %e A373949 0 1 0 4 4 7 %e A373949 0 1 1 5 6 5 14 %e A373949 0 1 0 6 10 10 14 23 %e A373949 0 1 1 6 14 12 29 26 39 %e A373949 0 1 0 9 16 19 40 54 46 71 %e A373949 0 1 1 8 22 22 64 82 96 92 124 %e A373949 0 1 0 10 26 30 82 137 144 204 176 214 %e A373949 0 1 1 11 32 31 121 186 240 331 393 323 378 %e A373949 Row n = 6 counts the following compositions: %e A373949 . (111111) (222) (33) (3111) (411) (6) %e A373949 (2211) (1113) (114) (51) %e A373949 (1122) (1221) (1311) (15) %e A373949 (21111) (12111) (1131) (42) %e A373949 (11112) (11211) (2112) (24) %e A373949 (11121) (141) %e A373949 (321) %e A373949 (312) %e A373949 (231) %e A373949 (213) %e A373949 (132) %e A373949 (123) %e A373949 (2121) %e A373949 (1212) %e A373949 For example, the composition (1,2,2,1) with compression (1,2,1) is counted under T(6,4). %t A373949 Table[Length[Select[Join@@Permutations /@ IntegerPartitions[n],Total[First/@Split[#]]==k&]], {n,0,10},{k,0,n}] %o A373949 (PARI) %o A373949 T_xy(row_max) = {my(N=row_max+1, x='x+O('x^N), h=1/(1-sum(i=1,N, (y^i*x^i)/(1+x^i*(y^i-1))))); vector(N, n, Vecrev(polcoeff(h, n-1)))} %o A373949 T_xy(13) \\ _John Tyler Rascoe_, Mar 20 2025 %Y A373949 Column k = n is A003242 (anti-runs or compressed compositions). %Y A373949 Row-sums are A011782. %Y A373949 Same as A373951 with rows reversed. %Y A373949 Column k = 3 is A373952. %Y A373949 This statistic is represented by A373953, difference A373954. %Y A373949 A114901 counts compositions with no isolated parts. %Y A373949 A116861 counts partitions by compressed sum, by compressed length A116608. %Y A373949 A124767 counts runs in standard compositions, anti-runs A333381. %Y A373949 A240085 counts compositions with no unique parts. %Y A373949 A333755 counts compositions by compressed length. %Y A373949 A373948 represents the run-compression transformation. %Y A373949 Cf. A037201 (halved A373947), A106356, A124762, A238130, A238279, A238343, A285981, A333213, A333489, A373950. %K A373949 nonn,tabl %O A373949 0,10 %A A373949 _Gus Wiseman_, Jun 28 2024