This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A373951 #6 Jun 28 2024 10:30:56 %S A373951 1,1,0,1,1,0,3,0,1,0,4,2,1,1,0,7,4,4,0,1,0,14,5,6,5,1,1,0,23,14,10,10, %T A373951 6,0,1,0,39,26,29,12,14,6,1,1,0,71,46,54,40,19,16,9,0,1,0,124,92,96, %U A373951 82,64,22,22,8,1,1,0,214,176,204,144,137,82,30,26,10,0,1,0 %N A373951 Triangle read by rows where T(n,k) is the number of integer compositions of n such that replacing each run of repeated parts with a single part (run-compression) yields a composition of n - k. %e A373951 Triangle begins: %e A373951 1 %e A373951 1 0 %e A373951 1 1 0 %e A373951 3 0 1 0 %e A373951 4 2 1 1 0 %e A373951 7 4 4 0 1 0 %e A373951 14 5 6 5 1 1 0 %e A373951 23 14 10 10 6 0 1 0 %e A373951 39 26 29 12 14 6 1 1 0 %e A373951 71 46 54 40 19 16 9 0 1 0 %e A373951 124 92 96 82 64 22 22 8 1 1 0 %e A373951 Row n = 6 counts the following compositions: %e A373951 (6) (411) (3111) (33) (222) (111111) . %e A373951 (51) (114) (1113) (2211) %e A373951 (15) (1311) (1221) (1122) %e A373951 (42) (1131) (12111) (21111) %e A373951 (24) (2112) (11211) (11112) %e A373951 (141) (11121) %e A373951 (321) %e A373951 (312) %e A373951 (231) %e A373951 (213) %e A373951 (132) %e A373951 (123) %e A373951 (2121) %e A373951 (1212) %e A373951 For example, the composition (1,2,2,1) with compression (1,2,1) is counted under T(6,2). %t A373951 Table[Length[Select[Join@@Permutations /@ IntegerPartitions[n], Total[First/@Split[#]]==n-k&]],{n,0,10},{k,0,n}] %Y A373951 Column k = 0 is A003242 (anti-runs or compressed compositions). %Y A373951 Row-sums are A011782. %Y A373951 Same as A373949 with rows reversed. %Y A373951 Column k = 1 is A373950. %Y A373951 This statistic is represented by A373954, difference A373953. %Y A373951 A114901 counts compositions with no isolated parts. %Y A373951 A116861 counts partitions by compressed sum, by compressed length A116608. %Y A373951 A124767 counts runs in standard compositions, anti-runs A333381. %Y A373951 A240085 counts compositions with no unique parts. %Y A373951 A333755 counts compositions by compressed length. %Y A373951 A373948 represents the run-compression transformation. %Y A373951 Cf. A037201 (halved A373947), A106356, A124762, A238130, A238279, A238343, A285981, A333213, A333382, A333489, A373952. %K A373951 nonn,tabl %O A373951 0,7 %A A373951 _Gus Wiseman_, Jun 28 2024