cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A373951 Triangle read by rows where T(n,k) is the number of integer compositions of n such that replacing each run of repeated parts with a single part (run-compression) yields a composition of n - k.

This page as a plain text file.
%I A373951 #6 Jun 28 2024 10:30:56
%S A373951 1,1,0,1,1,0,3,0,1,0,4,2,1,1,0,7,4,4,0,1,0,14,5,6,5,1,1,0,23,14,10,10,
%T A373951 6,0,1,0,39,26,29,12,14,6,1,1,0,71,46,54,40,19,16,9,0,1,0,124,92,96,
%U A373951 82,64,22,22,8,1,1,0,214,176,204,144,137,82,30,26,10,0,1,0
%N A373951 Triangle read by rows where T(n,k) is the number of integer compositions of n such that replacing each run of repeated parts with a single part (run-compression) yields a composition of n - k.
%e A373951 Triangle begins:
%e A373951     1
%e A373951     1   0
%e A373951     1   1   0
%e A373951     3   0   1   0
%e A373951     4   2   1   1   0
%e A373951     7   4   4   0   1   0
%e A373951    14   5   6   5   1   1   0
%e A373951    23  14  10  10   6   0   1   0
%e A373951    39  26  29  12  14   6   1   1   0
%e A373951    71  46  54  40  19  16   9   0   1   0
%e A373951   124  92  96  82  64  22  22   8   1   1   0
%e A373951 Row n = 6 counts the following compositions:
%e A373951   (6)     (411)   (3111)   (33)     (222)  (111111)  .
%e A373951   (51)    (114)   (1113)   (2211)
%e A373951   (15)    (1311)  (1221)   (1122)
%e A373951   (42)    (1131)  (12111)  (21111)
%e A373951   (24)    (2112)  (11211)  (11112)
%e A373951   (141)           (11121)
%e A373951   (321)
%e A373951   (312)
%e A373951   (231)
%e A373951   (213)
%e A373951   (132)
%e A373951   (123)
%e A373951   (2121)
%e A373951   (1212)
%e A373951 For example, the composition (1,2,2,1) with compression (1,2,1) is counted under T(6,2).
%t A373951 Table[Length[Select[Join@@Permutations /@ IntegerPartitions[n], Total[First/@Split[#]]==n-k&]],{n,0,10},{k,0,n}]
%Y A373951 Column k = 0 is A003242 (anti-runs or compressed compositions).
%Y A373951 Row-sums are A011782.
%Y A373951 Same as A373949 with rows reversed.
%Y A373951 Column k = 1 is A373950.
%Y A373951 This statistic is represented by A373954, difference A373953.
%Y A373951 A114901 counts compositions with no isolated parts.
%Y A373951 A116861 counts partitions by compressed sum, by compressed length A116608.
%Y A373951 A124767 counts runs in standard compositions, anti-runs A333381.
%Y A373951 A240085 counts compositions with no unique parts.
%Y A373951 A333755 counts compositions by compressed length.
%Y A373951 A373948 represents the run-compression transformation.
%Y A373951 Cf. A037201 (halved A373947), A106356, A124762, A238130, A238279, A238343, A285981, A333213, A333382, A333489, A373952.
%K A373951 nonn,tabl
%O A373951 0,7
%A A373951 _Gus Wiseman_, Jun 28 2024