This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A373952 #13 Jul 01 2024 20:10:51 %S A373952 0,0,0,3,2,4,5,6,6,9,8,10,11,12,12,15,14,16,17,18,18,21,20,22,23,24, %T A373952 24,27,26,28,29,30,30,33,32,34,35,36,36,39,38,40,41,42,42,45,44,46,47, %U A373952 48,48,51,50,52,53,54,54,57,56,58,59,60,60,63,62,64,65,66 %N A373952 Number of integer compositions of n whose run-compression sums to 3. %C A373952 We define the (run-) compression of a sequence to be the anti-run obtained by reducing each run of repeated parts to a single part. Alternatively, compression removes all parts equal to the part immediately to their left. For example, (1,1,2,2,1) has compression (1,2,1). %H A373952 John Tyler Rascoe, <a href="/A373952/b373952.txt">Table of n, a(n) for n = 0..10000</a> %F A373952 G.f.: x^3 * (3-x-x^2-x^3)/((1-x)*(1-x^2)*(1-x^3)). - _John Tyler Rascoe_, Jul 01 2024 %e A373952 The a(3) = 3 through a(9) = 9 compositions: %e A373952 (3) (112) (122) (33) (1222) (11222) (333) %e A373952 (12) (211) (221) (1122) (2221) (22211) (12222) %e A373952 (21) (1112) (2211) (11122) (111122) (22221) %e A373952 (2111) (11112) (22111) (221111) (111222) %e A373952 (21111) (111112) (1111112) (222111) %e A373952 (211111) (2111111) (1111122) %e A373952 (2211111) %e A373952 (11111112) %e A373952 (21111111) %t A373952 Table[Length[Select[Join@@Permutations /@ IntegerPartitions[n],Total[First/@Split[#]]==3&]],{n,0,10}] %o A373952 (PARI) %o A373952 A_x(N)={my(x='x+O('x^N)); concat([0, 0, 0], Vec(x^3 *(3-x-x^2-x^3)/((1-x)*(1-x^2)*(1-x^3))))} %o A373952 A_x(50) \\ _John Tyler Rascoe_, Jul 01 2024 %Y A373952 For partitions we appear to have A137719. %Y A373952 Column k = 3 of A373949, rows-reversed A373951. %Y A373952 The compression-sum statistic is represented by A373953, difference A373954. %Y A373952 A003242 counts compressed compositions (anti-runs). %Y A373952 A011782 counts compositions. %Y A373952 A114901 counts compositions with no isolated parts. %Y A373952 A116861 counts partitions by compressed sum, by compressed length A116608. %Y A373952 A124767 counts runs in standard compositions, anti-runs A333381. %Y A373952 A240085 counts compositions with no unique parts. %Y A373952 A333755 counts compositions by compressed length. %Y A373952 A373948 represents the run-compression transformation. %Y A373952 Cf. A037201 (halved A373947), A106356, A124762, A238130, A238279, A238343, A285981, A333213, A333489, A373950. %K A373952 nonn %O A373952 0,4 %A A373952 _Gus Wiseman_, Jun 29 2024 %E A373952 a(26) onwards from _John Tyler Rascoe_, Jul 01 2024