cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A373964 Number of compositions of 6*n-4 into parts 5 and 6.

This page as a plain text file.
%I A373964 #9 Jun 24 2024 08:47:22
%S A373964 0,0,0,1,5,15,35,70,127,221,396,781,1716,4005,9390,21421,47107,100283,
%T A373964 208982,432197,898064,1889152,4028036,8671852,18739049,40434205,
%U A373964 86861995,185669195,395358538,840341619,1786426005,3803164340,8111872645,17329007156
%N A373964 Number of compositions of 6*n-4 into parts 5 and 6.
%H A373964 <a href="/index/Rec#order_06">Index entries for linear recurrences with constant coefficients</a>, signature (6,-15,20,-15,7,-1).
%F A373964 a(n) = A017837(6*n-4).
%F A373964 a(n) = Sum_{k=0..floor(n/5)} binomial(n+k,n-4-5*k).
%F A373964 a(n) = 6*a(n-1) - 15*a(n-2) + 20*a(n-3) - 15*a(n-4) + 7*a(n-5) - a(n-6).
%F A373964 G.f.: x^4*(1-x)/((1-x)^6 - x^5).
%F A373964 a(n) = A369794(n+1) - A369794(n).
%o A373964 (PARI) a(n) = sum(k=0, n\5, binomial(n+k, n-4-5*k));
%Y A373964 Cf. A107025, A369794, A373961, A373962, A373963.
%Y A373964 Cf. A017837.
%K A373964 nonn,easy
%O A373964 1,5
%A A373964 _Seiichi Manyama_, Jun 24 2024