cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A373966 Triangle read by rows: T(n,k) = (-1)^(n+1) * A000166(n) + (-1)^(k) * A000166(k) for n >= 2 and 1 <= k <= n-1.

This page as a plain text file.
%I A373966 #14 Aug 03 2024 19:24:02
%S A373966 -1,2,3,-9,-8,-11,44,45,42,53,-265,-264,-267,-256,-309,1854,1855,1852,
%T A373966 1863,1810,2119,-14833,-14832,-14835,-14824,-14877,-14568,-16687,
%U A373966 133496,133497,133494,133505,133452,133761,131642,148329,-1334961,-1334960,-1334963,-1334952,-1335005,-1334696,-1336815,-1320128,-1468457
%N A373966 Triangle read by rows: T(n,k) = (-1)^(n+1) * A000166(n) + (-1)^(k) * A000166(k) for n >= 2 and 1 <= k <= n-1.
%F A373966 Integral_{1..e} (log(x)^k - log(x)^n) dx = T(n,k)*e + A373967(n,k).
%e A373966 Triangle begins:
%e A373966     -1;
%e A373966      2,    3;
%e A373966     -9,   -8,  -11;
%e A373966     44,   45,   42,   53;
%e A373966   -265, -264, -267, -256, -309;
%e A373966   1854, 1855, 1852, 1863, 1810, 2119;
%e A373966   ...
%t A373966 T[n_,k_]:= (-1)^(n+1)*Subfactorial[n] + (-1)^k*Subfactorial[k]; Table[T[n,k],{n,2,10},{k,n-1}]// Flatten (* _Stefano Spezia_, Jun 24 2024 *)
%Y A373966 Cf. A153805, A373967.
%Y A373966 Unsigned columns: A000166, A000240.
%Y A373966 Unsigned diagonals: A000255, A018934.
%K A373966 sign,tabl,easy
%O A373966 2,2
%A A373966 _Mohammed Yaseen_, Jun 24 2024