This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A373967 #17 Aug 03 2024 19:24:17 %S A373967 3,-5,-8,25,22,30,-119,-122,-114,-144,721,718,726,696,840,-5039,-5042, %T A373967 -5034,-5064,-4920,-5760,40321,40318,40326,40296,40440,39600,45360, %U A373967 -362879,-362882,-362874,-362904,-362760,-363600,-357840,-403200,3628801,3628798,3628806,3628776,3628920,3628080,3633840,3588480,3991680 %N A373967 Triangle read by rows: T(n,k) = (-1)^n * n! + (-1)^(k+1) * k! for n >= 2 and 1 <= k <= n-1. %F A373967 Integral_{1..e} (log(x)^k - log(x)^n) dx = A373966(n,k)*e + T(n,k). %e A373967 Triangle begins: %e A373967 3; %e A373967 -5, -8; %e A373967 25, 22, 30; %e A373967 -119, -122, -114, -144; %e A373967 721, 718, 726, 696, 840; %e A373967 -5039, -5042, -5034, -5064, -4920, -5760; %e A373967 ... %t A373967 T[n_,k_]:= (-1)^n*n! + (-1)^(k+1)*k!; Table[T[n,k],{n,2,10},{k,n-1}]// Flatten (* _Stefano Spezia_, Jun 24 2024 *) %Y A373967 Cf. A000142, A153805, A373966. %Y A373967 Unsigned diagonals: A001048, A213167. %K A373967 sign,tabl,easy %O A373967 2,1 %A A373967 _Mohammed Yaseen_, Jun 24 2024