This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A374000 #4 Jul 07 2024 20:58:35 %S A374000 15,385,1001,5005,85085,323323,7436429,955049953, %T A374000 183698727318433150098859517,35336848261,435656388001, %U A374000 3868985835982814590518552822749329543261,1448810778701,20475850236047,5663533044013,343523383391078124677551786579090220816600929,62298863484143 %N A374000 a(n) = Product_{i=1..m} prime(k + T(n,i)) where k = pi(A186702(n)), T(n,i) is the i-th term in row n of A186634, and m = length of row n of A186634. %e A374000 Let p = A186702 and let T(n,i) be the i-th term in row n of A186634. %e A374000 a(1) = 15 since p(1) = 3 and row 1 of T is {0, 2}, hence 3 * (3+2) = 3 * 5 = 15. %e A374000 a(2) = 385 since p(2) = 5 and row 2 of T is {0, 2, 4}, hence 5 * (5+2) * (5+2+4) = 5*7*11 = 385. %e A374000 Prime decomposition of the first 8 terms. %e A374000 a(n) k k+m-1 prime decomposition. %e A374000 ---------------------------------------------- %e A374000 15 2 3 3 * 5 %e A374000 385 3 5 5 * 7 * 11 %e A374000 1001 4 6 7 * 11 * 13 %e A374000 5005 3 6 5 * 7 * 11 * 13 %e A374000 85085 3 7 5 * 7 * 11 * 13 * 17 %e A374000 323323 4 8 7 * 11 * 13 * 17 * 19 %e A374000 7436429 4 9 7 * 11 * 13 * 17 * 19 * 23 %e A374000 955049953 5 11 11 * 13 * 17 * 19 * 23 * 29 * 31 %Y A374000 Cf. A005117, A120944, A186634, A186702. %K A374000 nonn %O A374000 1,1 %A A374000 _Michael De Vlieger_, Jul 04 2024