cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A374000 a(n) = Product_{i=1..m} prime(k + T(n,i)) where k = pi(A186702(n)), T(n,i) is the i-th term in row n of A186634, and m = length of row n of A186634.

This page as a plain text file.
%I A374000 #4 Jul 07 2024 20:58:35
%S A374000 15,385,1001,5005,85085,323323,7436429,955049953,
%T A374000 183698727318433150098859517,35336848261,435656388001,
%U A374000 3868985835982814590518552822749329543261,1448810778701,20475850236047,5663533044013,343523383391078124677551786579090220816600929,62298863484143
%N A374000 a(n) = Product_{i=1..m} prime(k + T(n,i)) where k = pi(A186702(n)), T(n,i) is the i-th term in row n of A186634, and m = length of row n of A186634.
%e A374000 Let p = A186702 and let T(n,i) be the i-th term in row n of A186634.
%e A374000 a(1) = 15 since p(1) = 3 and row 1 of T is {0, 2}, hence 3 * (3+2) = 3 * 5 = 15.
%e A374000 a(2) = 385 since p(2) = 5 and row 2 of T is {0, 2, 4}, hence 5 * (5+2) * (5+2+4) = 5*7*11 = 385.
%e A374000 Prime decomposition of the first 8 terms.
%e A374000         a(n)    k  k+m-1  prime decomposition.
%e A374000 ----------------------------------------------
%e A374000          15     2     3    3 *  5
%e A374000         385     3     5    5 *  7 * 11
%e A374000        1001     4     6    7 * 11 * 13
%e A374000        5005     3     6    5 *  7 * 11 * 13
%e A374000       85085     3     7    5 *  7 * 11 * 13 * 17
%e A374000      323323     4     8    7 * 11 * 13 * 17 * 19
%e A374000     7436429     4     9    7 * 11 * 13 * 17 * 19 * 23
%e A374000   955049953     5    11   11 * 13 * 17 * 19 * 23 * 29 * 31
%Y A374000 Cf. A005117, A120944, A186634, A186702.
%K A374000 nonn
%O A374000 1,1
%A A374000 _Michael De Vlieger_, Jul 04 2024