This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A374001 #15 Jul 03 2024 07:46:17 %S A374001 4,16,32,96,160,256,480,704,896,1280,1152,1536,1920,3072,3744,4608, %T A374001 3840,4224,5760,8640,7872,8448,9216,9600,9984,13824,16128,12288,14400, %U A374001 20800,18432,25760,23040,23040,26240,38528,34176,42240,31104,48640,34560,48384,46080 %N A374001 a(n) is the number of elements z of Z_p[i] such that #{z^k, k >= 0} = p^2-1 (where p denotes A002145(n), the n-th prime number congruent to 3 modulo 4). %C A374001 Z_p[i] is a field iff p is a prime number congruent to 3 modulo 4. %C A374001 a(n) is the number of generators of the multiplicative group Z_p[i] \ {0} (where p denotes A002145(n)). %H A374001 Rémy Sigrist, <a href="/A374001/a374001.png">Scatterplot of (x, y) such that #{(x+i*y)^k, k >= 0} = p^2-1</a> (with p = A002145(62) = 647) %H A374001 Rémy Sigrist, <a href="/A374001/a374001.txt">C++ program</a> %H A374001 StackExchange, <a href="https://math.stackexchange.com/questions/1187066/z-pi-is-a-field">Z_p[i] is a field?</a> %e A374001 For n = 2: %e A374001 - the second prime number congruent to 3 modulo 4 is p = 7, %e A374001 - the number of elements of {(x + i*y)^k, k >= 0} where x and y belong to Z_7 are: %e A374001 x\y | 0 1 2 3 4 5 6 %e A374001 ----+-------------------------- %e A374001 0 | 2 4 12 12 12 12 4 %e A374001 1 | 1 24 48 48 48 48 24 %e A374001 2 | 3 48 8 16 16 8 48 %e A374001 3 | 6 48 16 24 24 16 48 %e A374001 4 | 3 48 16 24 24 16 48 %e A374001 5 | 6 48 8 16 16 8 48 %e A374001 6 | 2 24 48 48 48 48 24 %e A374001 - the number 48 appears 16 times, so a(2) = 16. %o A374001 (C++) // See Links section. %Y A374001 Cf. A002145, A271586, A373624. %K A374001 nonn %O A374001 1,1 %A A374001 _Rémy Sigrist_, Jun 24 2024