cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A374006 Product of the first n primes greater than or equal to n.

This page as a plain text file.
%I A374006 #36 Jul 14 2024 02:35:55
%S A374006 1,2,6,105,5005,85085,7436429,215656441,35336848261,1448810778701,
%T A374006 62298863484143,2928046583754721,832363787945546597,
%U A374006 50774191064678342417,18579448222667298067513,1356299720254712758928449,107147677900122307955347471,8893257265710151560293840093
%N A374006 Product of the first n primes greater than or equal to n.
%C A374006 This sequence came up in the course of a currently ongoing investigation into Singmaster's conjecture by a group including the author of this sequence.
%F A374006 a(n) = Product_{i=1+pi(n-1)..n+pi(n-1)} prime(i).
%F A374006 a(n) = A272899(n) <=> n in A141468.
%e A374006 a(4) is the product of the first four primes greater than or equal to 4: 5*7*11*13 = 5005.
%p A374006 a:= n-> mul((nextprime@@i)(n-1), i=1..n):
%p A374006 seq(a(n), n=0..17);  # _Alois P. Heinz_, Jun 24 2024
%t A374006 a[n_]:=Product[Prime[i],{i,1+PrimePi[n-1],n+PrimePi[n-1]}]; Array[a,18,0] (* _Stefano Spezia_, Jun 25 2024 *)
%o A374006 (PARI) a(n) = if (n==0, 1, my(p=nextprime(n)); vecprod(primes([p, prime(primepi(p)+n-1)]))); \\ _Michel Marcus_, Jun 25 2024
%Y A374006 Cf. A000040, A000720, A141468, A272899.
%K A374006 nonn,easy
%O A374006 0,2
%A A374006 _Jesse Hammer_, Jun 24 2024