This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A374008 #6 Jun 24 2024 19:24:11 %S A374008 28,30,43,49,62,72,85,99,112,130,143,165,178,204,217,247,260,294,307, %T A374008 345,358,400,413,459,472,522,535,589,602,660,673,735,748,814,827,897, %U A374008 910,984,997,1075,1088,1170,1183,1269,1282,1372,1385,1479,1492,1590,1603,1705 %N A374008 a(n) = (1 + (n+6)^2 + (n-7)*(-1)^n)/2. %C A374008 Fill an array with the natural numbers n = 1,2,... along diagonals in alternating 'down' and 'up' directions. a(n) is row 7 of the boustrophedon-style array (see example). %C A374008 In general, row k is given by (1+t^2+(n-k)*(-1)^t)/2, t = n+k-1. Here, k=7. %H A374008 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (1,2,-2,-1,1). %F A374008 a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5). %F A374008 G.f.: -x*(15*x^4+2*x^3-43*x^2+2x+28)/((x+1)^2*(x-1)^3). %F A374008 a(n) = A374007(n+1) - (-1)^n. %e A374008 [ 1] [ 2] [ 3] [ 4] [ 5] [ 6] [ 7] [ 8] [ 9] [10] [11] [12] %e A374008 [ 1] 1 3 4 10 11 21 22 36 37 55 56 78 ... %e A374008 [ 2] 2 5 9 12 20 23 35 38 54 57 77 ... %e A374008 [ 3] 6 8 13 19 24 34 39 53 58 76 ... %e A374008 [ 4] 7 14 18 25 33 40 52 59 75 ... %e A374008 [ 5] 15 17 26 32 41 51 60 74 ... %e A374008 [ 6] 16 27 31 42 50 61 73 ... %e A374008 [ 7] 28 30 43 49 62 72 ... %e A374008 [ 8] 29 44 48 63 71 ... %e A374008 [ 9] 45 47 64 70 ... %e A374008 [10] 46 65 69 ... %e A374008 [11] 66 68 ... %e A374008 [12] 67 ... %e A374008 ... %t A374008 CoefficientList[Series[-(15*x^4 + 2*x^3 - 43*x^2 + 2 x + 28)/((x + 1)^2*(x - 1)^3), {x, 0, 50}], x] %t A374008 k := 7; Table[(1 + (n + k - 1)^2 + (n - k) (-1)^(n + k - 1))/2, {n, 80}] %o A374008 (Magma) [(1 + (n+6)^2 + (n-7)*(-1)^n)/2: n in [1..80]]; %Y A374008 For rows k = 1..10: A131179 (k=1) n>0, A373662 (k=2), A373663 (k=3), A374004 (k=4), A374005 (k=5), A374007 (k=6), this sequence (k=7), A374009 (k=8), A374010 (k=9), A374011 (k=10). %Y A374008 Row 7 of the table in A056011. %Y A374008 Column 7 of the rectangular array in A056023. %K A374008 nonn,easy %O A374008 1,1 %A A374008 _Wesley Ivan Hurt_, Jun 24 2024