This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A374012 #25 Feb 16 2025 08:34:06 %S A374012 1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26, %T A374012 27,28,29,30,31,32,33,34,35,36,37,38,39,40,41,42,43,44,45,46,47,48,49, %U A374012 50,51,52,53,54,55,56,57,58,59,60,61,62,63,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15,16 %N A374012 Least number of 6th powers needed to represent n. %C A374012 a(703) = 73. %D A374012 Pillai, S. S. (1940) On Waring’s problem g(6) = 73. Proc. Indian Acad. Sci. 12A: 30-40 %H A374012 Seiichi Manyama, <a href="/A374012/b374012.txt">Table of n, a(n) for n = 1..10000</a> %H A374012 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/WaringsProblem.html">Waring's Problem</a>. %F A374012 a(n) <= 73. %o A374012 (PARI) a_vector(n, k=6) = my(v=vector(n), cnt=0, d=0, p=1, s=sum(j=1, sqrtnint(n, k), x^j^k)+x*O(x^n)); while(cnt<n, d++; p*=s; for(i=1, n, if(!v[i] && polcoef(p, i), v[i]=d; cnt++))); v; %o A374012 (Python) %o A374012 from itertools import count %o A374012 from sympy.solvers.diophantine.diophantine import power_representation %o A374012 def A374012(n): %o A374012 if n == 1: return 1 %o A374012 for k in count(1): %o A374012 try: %o A374012 next(power_representation(n,6,k)) %o A374012 except: %o A374012 continue %o A374012 return k # _Chai Wah Wu_, Jun 25 2024 %Y A374012 Cf. A002828, A002376, A002377, A188462. %Y A374012 Cf. A002804, A018886. %K A374012 nonn,look %O A374012 1,2 %A A374012 _Seiichi Manyama_, Jun 25 2024