cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A374018 Expansion of Product_{k>=1} 1 / (1 - x^(3*k-1))^2.

This page as a plain text file.
%I A374018 #8 Jun 27 2024 09:04:43
%S A374018 1,0,2,0,3,2,4,4,7,6,13,10,19,18,27,30,42,44,63,66,91,100,130,144,187,
%T A374018 206,263,294,364,412,506,568,696,782,943,1070,1273,1444,1713,1936,
%U A374018 2285,2586,3027,3428,3996,4516,5243,5924,6841,7730,8895,10030,11512,12966,14825,16696
%N A374018 Expansion of Product_{k>=1} 1 / (1 - x^(3*k-1))^2.
%F A374018 a(0) = 1; a(n) = (2/n) * Sum_{k=1..n} A078182(k) * a(n-k).
%F A374018 a(n) = Sum_{k=0..n} A035386(k) * A035386(n-k).
%F A374018 a(n) ~ exp(2*Pi*sqrt(n)/3) * Pi^(4/3) / (3^(3/2) * Gamma(1/3)^2 * n^(11/12)). - _Vaclav Kotesovec_, Jun 25 2024
%t A374018 nmax = 55; CoefficientList[Series[Product[1/(1 - x^(3 k - 1))^2, {k, 1, nmax}], {x, 0, nmax}], x]
%Y A374018 Cf. A000712, A022567, A035386, A078182, A261616, A374019.
%K A374018 nonn
%O A374018 0,3
%A A374018 _Ilya Gutkovskiy_, Jun 25 2024