cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A374019 Expansion of Product_{k>=1} 1 / (1 - x^(4*k-1))^2.

This page as a plain text file.
%I A374019 #7 Jun 27 2024 10:20:51
%S A374019 1,0,0,2,0,0,3,2,0,4,4,2,5,6,7,8,8,12,15,12,17,26,23,24,37,40,39,50,
%T A374019 62,66,74,86,101,116,122,144,175,184,202,246,274,294,340,388,432,480,
%U A374019 533,610,684,742,835,956,1045,1144,1299,1450,1586,1758,1965,2182,2400,2638,2941,3268,3560,3922
%N A374019 Expansion of Product_{k>=1} 1 / (1 - x^(4*k-1))^2.
%F A374019 a(0) = 1; a(n) = (2/n) * Sum_{k=1..n} A050452(k) * a(n-k).
%F A374019 a(n) = Sum_{k=0..n} A035462(k) * A035462(n-k).
%F A374019 a(n) ~ Pi^(3/2) * exp(Pi*sqrt(n/3)) / (2*sqrt(3) * Gamma(1/4)^2 * n). - _Vaclav Kotesovec_, Jun 25 2024
%t A374019 nmax = 65; CoefficientList[Series[Product[1/(1 - x^(4 k - 1))^2, {k, 1, nmax}], {x, 0, nmax}], x]
%Y A374019 Cf. A000712, A022567, A035462, A050452, A261629, A374018.
%K A374019 nonn
%O A374019 0,4
%A A374019 _Ilya Gutkovskiy_, Jun 25 2024