This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A374020 #37 May 15 2025 08:17:01 %S A374020 0,0,0,0,0,0,0,1,2,2,4,5,7,9,10,12,15,18,23,26,29,33,39,43,48,54,60, %T A374020 65,74,79,87,96,105,114,122,129,140,151,162,171,185,194,210,223,233, %U A374020 247,264,277,293,308,323,338,360,376,392,407,425,444,468,484 %N A374020 Number of solutions to a^2 + d^2 = b^2 + c^2 with 1 <= a < b < c < d <= n. %H A374020 Seiichi Manyama, <a href="/A374020/b374020.txt">Table of n, a(n) for n = 1..1000</a> %H A374020 Quora, <a href="https://www.quora.com/Can-the-sum-of-two-squares-a-2-b-2-be-equal-to-the-sum-of-two-other-squares-c-2-d-2-where-a-b-c-d-are-distinct-positive-integers-If-so-how-do-we-calculate-them">Can the sum of two squares a^2+b^2 be equal to the sum of two other squares c^2+d^2 where a,b,c,d are distinct positive integers? If so, how do we calculate them?</a> %e A374020 For n = 9 the a(9) = 2 solutions are 1^2 + 8^2 = 4^2 + 7^2 = 65 and 2^2 + 9^2 = 6^2 + 7^2 = 85. %e A374020 For n = 18 three of the a(18) = 18 solutions sum up to 325: 1^2 + 18^2 = 6^2 + 17^2 = 10^2 + 15^2. %o A374020 (C) #include <stdio.h> %o A374020 #define N 10000ULL %o A374020 typedef unsigned long long ull_t; %o A374020 ull_t Sums[2 * N * N]; %o A374020 int main() { %o A374020 ull_t sol = 0; %o A374020 for (ull_t i = 1; i < N; i++) %o A374020 for (ull_t j = i + 1; j <= N; j++) %o A374020 sol += Sums[i * i + j * j]++; %o A374020 printf("%llu \n", sol); %o A374020 } %o A374020 (Python) %o A374020 from itertools import count, islice %o A374020 from collections import Counter %o A374020 def A374020_gen(): # generator of terms %o A374020 c, s = 0, Counter() %o A374020 for n in count(1): %o A374020 n2 = n**2 %o A374020 for i in range(1,n): %o A374020 c += s[m:=i**2+n2] %o A374020 s[m] += 1 %o A374020 yield c %o A374020 A374020_list = list(islice(A374020_gen(),20)) # _Chai Wah Wu_, Jul 18 2024 %K A374020 nonn %O A374020 1,9 %A A374020 _Thorsten Ehlers_, Jun 25 2024