cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A374022 a(n) is the cardinality of the set containing all noninteger rationals of the form m/2^(bigomega(m) - 1) <= n.

This page as a plain text file.
%I A374022 #36 Dec 04 2024 05:49:46
%S A374022 0,0,0,0,1,1,2,3,3,3,5,6,7,7,7,9,11,12,13,14,14,14,15,16,18,20,21,22,
%T A374022 24,25,25,26,27,27,29,30,31,33,35,36,36,37,40,43,43,44,46,47,48,48,48,
%U A374022 50,50,51,51,54,55,58,58,60,61,64,64,66,68,71,72,72,74
%N A374022 a(n) is the cardinality of the set containing all noninteger rationals of the form m/2^(bigomega(m) - 1) <= n.
%H A374022 Chai Wah Wu, <a href="/A374022/b374022.txt">Table of n, a(n) for n = 1..10000</a>
%F A374022 a(n) = card{x | x = m/2^(bigomega(m)-1), x noninteger, x<=n}.
%F A374022 a(n) = pi_k(n * 2^(k - 1)) - pi(n) with pi_k(n) as the counting function for k-almost primes and k sufficiently large.
%F A374022 k needs to be at least max(1, floor(log(n/2)/(log(3)-log(2)))) and m = n * 2^(k - 1).
%F A374022 a(n) = A373943(n) - A000720(n).
%e A374022 a(5)  = 1 = card{9/2}.
%e A374022 a(7)  = 2 = card{9/2, 27/4}.
%e A374022 a(8)  = 3 = card{9/2, 27/4, 15/2}.
%e A374022 a(11) = 5 = card{9/2, 27/4, 15/2, 81/8, 21/2}.
%e A374022 a(12) = 6 = card{9/2, 27/4, 15/2, 81/8, 21/2, 45/4}.
%e A374022 a(13) = 7 = card{9/2, 27/4, 15/2, 81/8, 21/2, 45/4, 25/2}.
%e A374022 a(16) = 9 = card{9/2, 27/4, 15/2, 81/8, 21/2, 45/4, 25/2, 243/16, 63/4}.
%e A374022 It appears that Pi*x_n - n/2 + sqrt(n)/2 ~ A002410(n), where x_n is the n-th term of the above vector.
%e A374022 The numerators of the above vector elements are A374074(n).
%e A374022 The denominators of the above vector elements are 2^(bigomega(A374074(n)) - 1).
%t A374022 z = 100;
%t A374022 k[n_] := Max[1, Floor[Log[3/2, n/2]]];
%t A374022 m[n_] := n 2^(k[n] - 1);
%t A374022 PrimePiK = Table[0, Floor[Log[2, m[z]]], m[z]];
%t A374022 For[i = 2, i <= m[z], i++, PrimePiK[[PrimeOmega[i], i]] = 1]
%t A374022 PrimePiK = Accumulate /@ PrimePiK;
%t A374022 a = Table[PrimePiK[[k[n], m[n]]] - PrimePi[n], {n, z}] (*sequence*)
%t A374022 x = Union@Select[Table[i/2^(PrimeOmega[i] - 1), {i, 1, m[z], 2}], # <= z && Mod[#,1] != 0 &] (*set*)
%o A374022 (PARI) nap(n, k) = sum(i=1, n, bigomega(i)==k);
%o A374022 a(n) = my(k=max(1, floor(log(n/2)/(log(3)-log(2))))); nap(n*2^(k-1), k) - primepi(n); \\ _Michel Marcus_, Jun 27 2024
%o A374022 (Python)
%o A374022 from math import isqrt, prod
%o A374022 from sympy import primepi, primerange, integer_nthroot
%o A374022 def A374022(n):
%o A374022     if n<=4: return 0
%o A374022     def g(x,a,b,c,m): yield from (((d,) for d in enumerate(primerange(b,isqrt(x//c)+1),a)) if m==2 else (((a2,b2),)+d for a2,b2 in enumerate(primerange(b,integer_nthroot(x//c,m)[0]+1),a) for d in g(x,a2,b2,c*b2,m-1)))
%o A374022     k = 1
%o A374022     while 3**k<(r:=n<<k-1): k+=1
%o A374022     return int(sum(primepi(r//prod(c[1] for c in a))-a[-1][0] for a in g(r,0,1,1,k))-primepi(n)) # _Chai Wah Wu_, Dec 03 2024
%Y A374022 Cf. A000720, A001222, A002410, A373943, A374074.
%K A374022 nonn
%O A374022 1,7
%A A374022 _Friedjof Tellkamp_, Jun 25 2024