cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A374027 Lexicographically earliest sequence of numbers whose partial products are all Fermat pseudoprimes to base 2 (A001567).

This page as a plain text file.
%I A374027 #13 Jun 30 2024 06:33:55
%S A374027 341,41,61,181,721,3061,6121,9181,27541,36721,91801,100981,238681,
%T A374027 21242521,67665781,477361,48690721,7160401,76377601,35802001,
%U A374027 83394792001,7500519001,60004152001,3420236664001,1380095496001,13110907212001,56583915336001,128003857254001
%N A374027 Lexicographically earliest sequence of numbers whose partial products are all Fermat pseudoprimes to base 2 (A001567).
%H A374027 Daniel Suteu, <a href="/A374027/b374027.txt">Table of n, a(n) for n = 1..47</a>
%H A374027 <a href="/index/Ps#pseudoprimes">Index entries for sequences related to pseudoprimes</a>.
%e A374027 The partial products begin with 341 = A001567(1), 341 * 41 = 13981 = A001567(29), 341 * 41 * 61 = 852841 = A001567(234), 341 * 41 * 61 * 181 = 154364221 = A001567(2509), ... .
%t A374027 pspQ[n_] := PowerMod[2, n - 1, n] == 1; a[1] = 341; a[n_] := a[n] = Module[{k = 3, r = Product[a[i], {i, 1, n - 1}]}, While[!pspQ[k*r], k+=2]; k]; Array[a, 8]
%o A374027 (PARI) ispsp(n) = Mod(2, n)^(n-1) == 1;
%o A374027 lista(len) = {my(prd = 1, c = 0, k = 341); while(c < len, while(!ispsp(prd * k), k += 2); prd *= k; print1(k,", "); c++; k = 3);}
%o A374027 (PARI) my(S=List(341),base=2); my(m = vecprod(Vec(S))); my(L = znorder(Mod(base, m))); print1(S[1], ", "); while(1, forstep(k=lift(1/Mod(m, L)), oo, L, if(gcd(m,k) == 1 && k > 1 && base % k != 0, if((m*k-1) % znorder(Mod(base, k)) == 0, print1(k, ", "); listput(S, k); L = lcm(L, znorder(Mod(base, k))); m *= k; break)))); \\ _Daniel Suteu_, Jun 30 2024
%Y A374027 Cf. A001567, A374028, A374029.
%K A374027 nonn
%O A374027 1,1
%A A374027 _Amiram Eldar_, Jun 26 2024
%E A374027 a(21)-a(28) from _Daniel Suteu_, Jun 30 2024