cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A374028 Lexicographically earliest sequence of prime numbers whose partial products, starting from the second, are all Fermat pseudoprimes to base 2 (A001567).

This page as a plain text file.
%I A374028 #12 Jun 30 2024 09:02:38
%S A374028 11,31,41,61,181,54001,6841,54721,110017981,13681,20521,61561,123121,
%T A374028 225721,246241,205201,410401,1128601,513001,3078001,4617001,
%U A374028 73442619001,96993612810001,55404001,7188669001,16773561001,67094244001,821904489001,29370505311001
%N A374028 Lexicographically earliest sequence of prime numbers whose partial products, starting from the second, are all Fermat pseudoprimes to base 2 (A001567).
%H A374028 Daniel Suteu, <a href="/A374028/b374028.txt">Table of n, a(n) for n = 1..43</a>
%H A374028 <a href="/index/Ps#pseudoprimes">Index entries for sequences related to pseudoprimes</a>.
%e A374028 The partial products begin with 11, 11 * 31 = 341 = A001567(1), 11 * 31 * 41 = 13981 = A001567(29), 11 * 31 * 41 * 61 = 852841 = A001567(234), 11 * 31 * 41 * 61 * 181 = 154364221 = A001567(2509), ... .
%t A374028 pspQ[n_] := PowerMod[2, n - 1, n] == 1; a[1] = 11; a[n_] := a[n] = Module[{p = 2, r = Product[a[i], {i, 1, n - 1}]}, While[! pspQ[p*r], p = NextPrime[p]]; p]; Array[a, 10]
%o A374028 (PARI) ispsp(n) = Mod(2, n)^(n-1) == 1;
%o A374028 lista(len) = {my(prd = 1, c = 0, k = 11); while(c < len, while(!ispsp(prd * k), k = nextprime(k+1)); prd *= k; print1(k,", "); c++; k = 3);}
%o A374028 (PARI) my(P=List(11), base=2); my(m = vecprod(Vec(P))); my(L = znorder(Mod(base, m))); print1(P[1], ", "); while(1, forstep(p=lift(1/Mod(m, L)), oo, L, if(isprime(p) && m % p != 0 && base % p != 0, if((m*p-1) % znorder(Mod(base, p)) == 0, print1(p, ", "); listput(P, p); L = lcm(L, znorder(Mod(base, p))); m *= p; break)))); \\ _Daniel Suteu_, Jun 30 2024
%Y A374028 Cf. A001567, A374027, A374029.
%K A374028 nonn
%O A374028 1,1
%A A374028 _Amiram Eldar_, Jun 26 2024
%E A374028 a(23)-a(29) from _Daniel Suteu_, Jun 30 2024