This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A374034 #8 Jun 27 2024 10:20:46 %S A374034 0,1,1,1,1,1,1,2,2,1,1,2,1,1,2,2,1,1,1,2,2,1,1,1,2,1,1,2,1,1,1,3,2,1, %T A374034 2,1,1,1,2,3,1,1,1,2,1,1,1,1,2,1,2,2,1,1,2,2,4,1,1,1,1,1,1,1,2,1,1,2, %U A374034 2,1,1,1,1,1,1,2,4,1,1,1,2,1,1,1,2,1,2,2,1,1,6,2,2,1,2,1,1,1,1,1,1,1,1,2,3 %N A374034 a(n) = A276150(gcd(A276085(n), A328768(n))), where A276150 is the digit sum in primorial base, A276085 is the primorial base log-function, and A328768 is the first primorial based variant of arithmetic derivative. %H A374034 Antti Karttunen, <a href="/A374034/b374034.txt">Table of n, a(n) for n = 1..100000</a> %H A374034 <a href="/index/Pri#primorial_numbers">Index entries for sequences related to primorial numbers</a> %F A374034 a(n) = A276150(A374031(n)). %F A374034 Apparently, a(n) <= A328771(n) for all n >= 1. %o A374034 (PARI) %o A374034 A002110(n) = prod(i=1,n,prime(i)); %o A374034 A276085(n) = { my(f = factor(n)); sum(k=1, #f~, f[k, 2]*A002110(primepi(f[k, 1])-1)); }; %o A374034 A276150(n) = { my(s=0, p=2, d); while(n, d = (n%p); s += d; n = (n-d)/p; p = nextprime(1+p)); (s); }; %o A374034 A328768(n) = if(n<=1, 0, my(f=factor(n)); n*sum(i=1, #f~, f[i, 2]*A002110(primepi(f[i,1])-1)/f[i, 1])); %o A374034 A374034(n) = A276150(gcd(A276085(n), A328768(n))); %Y A374034 Cf. A002110, A276085, A276150, A328768, A374031. %Y A374034 Cf. also A328771, A373989. %K A374034 nonn %O A374034 1,8 %A A374034 _Antti Karttunen_, Jun 27 2024