A374057 Integers k such that all k - p are primitive practical numbers where p is a primitive practical number in range k/2 <= p < k.
2, 3, 4, 7, 8, 12, 21, 22, 26, 62, 72, 182
Offset: 1
Examples
182 is a term because the primitive practical numbers p in the range 91 <= p < 182 are {104, 140}. Also the complementary set {78, 42} has all its members primitive practical numbers.
Links
- Mehdi Hage-Hassan, An elementary introduction to Quantum mechanic, hal-00879586 2013 pp 58.
Programs
-
Mathematica
PracticalQ[n_] := Module[{f, p, e, prod=1, ok=True}, If[n<1||(n>1&&OddQ[n]), False, If[n==1, True, f=FactorInteger[n]; {p, e}=Transpose[f]; Do[If[p[[i]]>1+DivisorSigma[1, prod], ok=False; Break[]]; prod=prod*p[[i]]^e[[i]], {i, Length[p]}]; ok]]]; DivFreeQ[n_] := Module[{plst=First/@Select[FactorInteger[n], #[[2]]>1 &], m, ok=False}, Do[If[! PracticalQ[n/plst[[m]]], ok=True, ok=False; Break[]], {m, 1, Length@plst}]; ok]; PPracticalQ[n_] := PracticalQ[n]&&(SquareFreeQ[n]||DivFreeQ[n]); plst[n_] := Select[Range[Ceiling[n/2], n-1], PPracticalQ]; lst={}; Do[If[plst[n]!={}&&AllTrue[n-plst[n], PPracticalQ], AppendTo[lst, n]], {n, 1, 10000}]; lst
Comments