This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A374084 #12 Jul 08 2024 08:53:35 %S A374084 3,5,8,14,17,27,30,44,47,65,68,90,93,119,122,152,155,189,192,230,233, %T A374084 275,278,324,327,377,380,434,437,495,498,560,563,629,632,702,705,779, %U A374084 782,860,863,945,948,1034,1037,1127,1130,1224,1227,1325,1328,1430,1433,1539 %N A374084 a(n) = (1 + (n+1)^2 + (n-2)*(-1)^n)/2. %C A374084 Fill an array with the natural numbers n = 1,2,... along diagonals in alternating 'down' and 'up' directions. a(n) is column 2 of the boustrophedon-style array (see example). %C A374084 In general, column k is given by (1+(t-1)^2+(n-k)*(-1)^t)/2, t = n+k. Here, k=2. %H A374084 <a href="/index/Rec#order_05">Index entries for linear recurrences with constant coefficients</a>, signature (1,2,-2,-1,1). %F A374084 a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5). %F A374084 G.f.: -x*(2*x^3-3*x^2+2*x+3)/((x+1)^2*(x-1)^3). %F A374084 a(n) = A128918(n+1) - (-1)^n. %F A374084 E.g.f.: (2 + x)*(exp(x)*x + 2*sinh(x))/2. - _Stefano Spezia_, Jun 29 2024 %e A374084 [ 1] [ 2] [ 3] [ 4] [ 5] [ 6] [ 7] [ 8] [ 9] [10] [11] [12] %e A374084 [ 1] 1 3 4 10 11 21 22 36 37 55 56 78 ... %e A374084 [ 2] 2 5 9 12 20 23 35 38 54 57 77 ... %e A374084 [ 3] 6 8 13 19 24 34 39 53 58 76 ... %e A374084 [ 4] 7 14 18 25 33 40 52 59 75 ... %e A374084 [ 5] 15 17 26 32 41 51 60 74 ... %e A374084 [ 6] 16 27 31 42 50 61 73 ... %e A374084 [ 7] 28 30 43 49 62 72 ... %e A374084 [ 8] 29 44 48 63 71 ... %e A374084 [ 9] 45 47 64 70 ... %e A374084 [10] 46 65 69 ... %e A374084 [11] 66 68 ... %e A374084 [12] 67 ... %e A374084 ... %t A374084 CoefficientList[Series[-(2*x^3 - 3*x^2 + 2*x + 3)/((x + 1)^2*(x - 1)^3), {x, 0, 50}], x] %t A374084 k := 2; Table[(1 + (n + k - 1)^2 + (n - k) (-1)^(n + k))/2, {n, 60}] %o A374084 (Magma) [(1 + (n+1)^2 + (n-2)*(-1)^n)/2: n in [1..80]]; %o A374084 (Python) %o A374084 def A374084(n): return (n*(n+1)+4 if n&1 else n*(n+3))>>1 # _Chai Wah Wu_, Jul 07 2024 %Y A374084 Cf. A128918 (Column 1) n>0, this sequence (Column 2). %Y A374084 Column 2 of the table in A056011. %Y A374084 Row 2 of the rectangular array in A056023. %K A374084 nonn,easy %O A374084 1,1 %A A374084 _Wesley Ivan Hurt_, Jun 27 2024