This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A374090 #64 Jun 30 2024 22:10:49 %S A374090 0,3,7,147,91,7203,637,352947,1729,24843,31213,847425747,12103, %T A374090 41523861603,405769,1217307,53599,99698791708803,157339, %U A374090 4885240793731347,593047,59648043 %N A374090 a(n) is the smallest nonnegative integer k where exactly n ordered pairs of positive integers (x, y) exist such that x^2 + x*y + y^2 = k. %C A374090 a(n) is the smallest nonnegative k such that A374088(k) = n. %C A374090 From _Chai Wah Wu_, Jun 28 2024: (Start) %C A374090 If x <> y and x^2 + x*y + y^2 = a(n), then (x, y) and (y, x) both count as solutions. Therefore if a(n) exists, then a(n) is of the form 3*m^2 if and only if n is odd. This also implies that a(2*n) = A374094(n). %C A374090 a(25) = 205724883. %C A374090 a(27) = 8968323. %C A374090 a(33) = 143214951243. %C A374090 a(35) = 10080519267. %C A374090 a(45) = 439447827. %C A374090 a(49) = 1703607756123. %C A374090 a(63) = 21532943523. %C A374090 a(75) = 74266682763. %C A374090 a(81) = 8618558403. %C A374090 a(135) = 422309361747. %C A374090 (End) %C A374090 From _David A. Corneth_, Jun 29 2024: (Start) %C A374090 a(19) <= 3*7^18. %C A374090 a(22) <= 3672178237. %C A374090 a(24) = 375193. %C A374090 a(26) = 2989441 <= 179936733613. %C A374090 a(28) = 29059303. %C A374090 a(30) = 7709611. %C A374090 a(32) = 1983163. %C A374090 a(34) <= 432028097404813. %C A374090 a(36) = 4877509. %C A374090 Conjecture: Let q_i be the i-th prime of the form 3*k + 1 and let m = Prod_{j=1, t} b_j, a factorization of m into factors > 1. %C A374090 Let f(m) = Prod_{j = 1..t} q_i^(b_(t+1-j)-1). %C A374090 Then for even n we have a(n) = min(f(n), f(n+1)) %C A374090 and for odd n we have a(n) = 3*f(n). %C A374090 Example for n = 22 we might factor 22 = 11*2. The first two primes of the form 3*k + 1 are 7 and 13. So we would have a(22) = min(7^10*13, 7^22). %C A374090 a(14) = min(f(14), f(15)) = min(7^6 * 13, 7^4 * 13^2) = 405769. (End) %F A374090 a(2*n) = A374094(n). %o A374090 (Python) %o A374090 from itertools import count %o A374090 from sympy.abc import x,y %o A374090 from sympy.solvers.diophantine.diophantine import diop_quadratic %o A374090 def A374090(n): return next(m for m in (3*k**2 if n&1 else k for k in count(0)) if sum(1 for d in diop_quadratic(x*(x+y)+y**2-m) if d[0]>0 and d[1]>0) == n) # _Chai Wah Wu_, Jun 28 2024 %Y A374090 Cf. A002476, A328151, A374091. %Y A374090 Cf. A003136, A374088, A374094. %K A374090 nonn,more %O A374090 0,2 %A A374090 _Seiichi Manyama_, Jun 28 2024 %E A374090 a(11), a(13) from _Chai Wah Wu_, Jun 28 2024 %E A374090 a(17) from _Bert Dobbelaere_, Jun 28 2024 %E A374090 a(19) from _Bert Dobbelaere_, Jun 30 2024