This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A374094 #31 Jun 29 2024 10:57:17 %S A374094 0,7,91,637,1729,31213,12103,405769,53599,157339,593047 %N A374094 a(n) is the smallest nonnegative integer k where there are exactly n solutions to x^2 + x*y + y^2 = k with 0 < x < y. %C A374094 a(n) is the smallest nonnegative k such that A374092(k) = n. %C A374094 a(11) > 10^8. - _Robert Israel_, Jun 28 2024 %F A374094 a(n) <= 13 * 7^(n-1). %p A374094 N:= 10^6: %p A374094 V:= Array(0..N): %p A374094 for x from 1 to floor(sqrt(N/3)) do %p A374094 for y from x+1 do %p A374094 v:= x^2 + x*y + y^2; %p A374094 if v > N then break fi; %p A374094 V[v]:= V[v]+1; %p A374094 od od: %p A374094 W:= Array(0..10); %p A374094 for i from 1 to N while count < 11 do %p A374094 v:= V[i]; %p A374094 if W[v] = 0 then W[v]:= i; count:= count+1 fi %p A374094 od: %p A374094 0, seq(W[i],i=1..10); # _Robert Israel_, Jun 28 2024 %o A374094 (Python) %o A374094 from itertools import count %o A374094 from sympy.abc import x,y %o A374094 from sympy.solvers.diophantine.diophantine import diop_quadratic %o A374094 def A374094(n): return next(m for m in count(0) if sum(1 for d in diop_quadratic(x*(x+y)+y**2-m) if 0<d[0]<d[1]) == n) # _Chai Wah Wu_, Jun 28 2024 %Y A374094 Cf. A093195, A374095. %Y A374094 Cf. A374090, A374092. %K A374094 nonn,more %O A374094 0,2 %A A374094 _Seiichi Manyama_, Jun 28 2024