This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A374158 #38 Jul 02 2024 10:20:00 %S A374158 0,4,91,28,196,31213,364,9604,53599,2548,470596 %N A374158 a(n) is the smallest nonnegative integer k where exactly n pairs of positive integers (x, y) exist such that x^2 + 3*y^2 = k. %C A374158 a(n) is the smallest nonnegative k such that A092573(k) = n. %C A374158 a(11) <= 3672178237. %C A374158 a(12) = 6916. %C A374158 a(13) = 33124. %C A374158 a(14) = 29059303. %C A374158 a(15) = 124852. %C A374158 a(16) = 1983163. %C A374158 a(18) = 48412. %C A374158 a(20) = 18384457. %C A374158 a(21) = 6117748. %C A374158 a(22) = 1623076. %C A374158 a(24) = 214396. %C A374158 a(27) = 629356. %C A374158 a(28) = 900838393. %C A374158 a(31) = 79530724. %C A374158 a(32) = 85276009. %C A374158 a(37) = 274299844. %C A374158 a(42) = 116237212. %C A374158 a(60) = 73537828. %C A374158 a(67) = 585930436. %C A374158 From _Chai Wah Wu_, Jun 29-30 2024: (Start) %C A374158 a(30) = 2372188. %C A374158 a(36) = 1500772. %C A374158 a(40) = 11957764. %C A374158 a(45) = 30838444. %C A374158 a(48) = 7932652. %C A374158 a(54) = 19510036. %C A374158 a(72) = 55528564. %C A374158 (End) %e A374158 n | a(n) %e A374158 -----+--------------------------- %e A374158 1 | 4 = 2^2. %e A374158 2 | 91 = 7 * 13. %e A374158 3 | 28 = 2^2 * 7. %e A374158 4 | 196 = 2^2 * 7^2. %e A374158 5 | 31213 = 7^4 * 13. %e A374158 6 | 364 = 2^2 * 7 * 13. %e A374158 7 | 9604 = 2^2 * 7^4. %e A374158 8 | 53599 = 7 * 13 * 19 * 31. %e A374158 9 | 2548 = 2^2 * 7^2 * 13. %e A374158 10 | 470596 = 2^2 * 7^6. %o A374158 (Python) %o A374158 from itertools import count %o A374158 from sympy.abc import x,y %o A374158 from sympy.solvers.diophantine.diophantine import diop_quadratic %o A374158 def A374158(n): return next(m for m in count(0) if sum(1 for d in diop_quadratic(x**2+3*y**2-m) if d[0]>0 and d[1]>0)==n) # _Chai Wah Wu_, Jun 29 2024 %Y A374158 Cf. A328151, A343105, A374159, A374160, A374161. %Y A374158 Cf. A002476, A092573. %K A374158 nonn,more %O A374158 0,2 %A A374158 _Seiichi Manyama_, Jun 29 2024