A374173 a(n) is the smallest prime whose base-n representation contains a run of at least n identical digits.
3, 13, 683, 3907, 55987, 960803, 19173967, 435848051, 11111111113, 1540683021299, 19453310068921, 328114698808283, 45302797058044219, 469172025408063623, 19676527011956855059, 878942778254232811943, 120353718818554114936591, 109912203092239643840221
Offset: 2
Examples
a(2) = 3 = 11_2. a(3) = 13 = 111_3. a(11) = 1540683021299 = 544444444444_11. a(18) = 120353718818554114936591 = 3111111111111111111_18. a(19) = 109912203092239643840221 = 1111111111111111111_19.
Links
- Robert Israel, Table of n, a(n) for n = 2..385
Programs
-
Maple
f:= proc(n) local t,Q,i,j; t:= (n^n-1)/(n-1); if isprime(t) then return t fi; for i from 1 to n-1 do Q:= select(isprime, [seq(i*t*n+j,j=1..n-1), seq(i*n^n+j*t,j=1..n-1)]); if Q <> [] then return min(Q) fi; od; FAIL end proc: map(f, [$2..20]); # Robert Israel, Dec 31 2024
-
Mathematica
d[n_]:=d[n]=Table[Table[m,n],{m,0,n-1}]; dpre[n_]:=Flatten[Table[{m}~Join~#&/@d[n],{m,0,n-1}],1]; dpost[n_]:=Flatten[Table[Map[#~Join~{m}&,d[n]],{m,0,n-1}],1]; dprepost[n_]:=Flatten[Table[Map[{j}~Join~#~Join~{m}&,d[n]],{m,0,n-1},{j,0,n-1}],2]; c[n_]:=c[n]=DeleteDuplicates[Sort[Select[FromDigits[#,n]&/@Join[d[n],dpre[n],dpost[n],dprepost[n]],#>n&]]]; a[n_]:=a[n]=Do[If[PrimeQ[q],Return[q];Break[];],{q,c[n]}]; Table[a[n],{n,2,19}]
Comments