cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A374209 Number of terms in Zeckendorf representation needed to write A113177(n), where A113177 is fully additive with a(p) = Fibonacci(p).

This page as a plain text file.
%I A374209 #16 Feb 19 2025 11:57:29
%S A374209 0,1,1,1,1,1,1,1,2,2,1,2,1,2,2,2,1,1,1,2,2,2,1,1,2,2,2,2,1,1,1,1,2,2,
%T A374209 2,2,1,2,2,1,1,2,1,2,2,2,1,2,2,2,2,2,1,2,2,2,2,2,1,2,1,2,3,2,2,2,1,2,
%U A374209 2,3,1,2,1,2,3,2,2,2,1,2,1,2,1,3,2,2,2,2,1,2,2,2,2,2,2,2,1,3,3,3,1,2,1,2,3
%N A374209 Number of terms in Zeckendorf representation needed to write A113177(n), where A113177 is fully additive with a(p) = Fibonacci(p).
%C A374209 Indices for the first occurrences of k=0..6 are: 1, 2, 9, 63, 693, 7623, 105105.
%C A374209 The claim a(n) <= bigomega(n) is true because A007895(n) is the minimum number of Fibonacci numbers which sum to n, regardless of adjacency or duplication. See Apr 17 2015 comments there.
%H A374209 Antti Karttunen, <a href="/A374209/b374209.txt">Table of n, a(n) for n = 1..129591</a>
%H A374209 Eric Weisstein's World of Mathematics, <a href="https://mathworld.wolfram.com/FibonacciNumber.html">Fibonacci Number</a>.
%H A374209 Wikipedia, <a href="https://en.wikipedia.org/wiki/Zeckendorf%27s_theorem">Zeckendorf's theorem</a>.
%F A374209 a(n) = A007895(A113177(n)).
%F A374209 a(p) = 1 for all primes p.
%F A374209 a(n) <= A001222(n), see comments.
%o A374209 (PARI)
%o A374209 A007895(n) = { my(s=0); while(n>0, s++; n -= fibonacci(1+A072649(n))); (s); }
%o A374209 A072649(n) = { my(m); if(n<1, 0, m=0; until(fibonacci(m)>n, m++); m-2); }; \\ From A072649
%o A374209 A113177(n) = if(n<=1, 0, my(f=factor(n)); sum(i=1, #f~, f[i, 2]*fibonacci(f[i,1])));
%o A374209 A374209(n) = if(isprime(n), 1, A007895(A113177(n)));
%Y A374209 Cf. A000045, A001222, A007895, A030426, A113177.
%Y A374209 Cf. also A328847, A328848.
%K A374209 nonn
%O A374209 1,9
%A A374209 _Antti Karttunen_, Jul 02 2024