This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A374233 #45 Jul 06 2024 09:25:14 %S A374233 2,2,3,2,3,5,17,2,3,5,19,2,3,5,7,29,37,2,3,5,7,11,13,2,3,5,7,11,37,53, %T A374233 67,2,3,5,7,11,13,17,59,83,2,3,5,7,11,19,41,61,83,101,2,3,5,7,11,17, %U A374233 19,31,37,43,2,3,5,7,11,13,53,73,97,109,127,149 %N A374233 Irregular triangle read by rows where row n lists the primes containing at least one digit not seen in any smaller prime in base n, for n >= 2. %e A374233 Row n=4 is 2, 3, 5, 17, which is 2_4, 3_4, 11_4, 101_4. %e A374233 First few rows: %e A374233 k=1 2 3 4 5 6 7 8 %e A374233 n=2: [2], %e A374233 n=3: [2, 3], %e A374233 n=4: [2, 3, 5, 17], %e A374233 n=5: [2, 3, 5, 19], %e A374233 n=6: [2, 3, 5, 7, 29, 37], %e A374233 n=7: [2, 3, 5, 7, 11, 13], %e A374233 n=8: [2, 3, 5, 7, 11, 37, 53, 67], %e A374233 ... %o A374233 (Python) %o A374233 from sympy.ntheory import digits, nextprime %o A374233 def row(n): %o A374233 if n == 2: return [2] %o A374233 p, r, used = 2, [2], {2} %o A374233 while len(used) < n: %o A374233 while (ds:=set(digits(p:=nextprime(p), n)[1:])) <= used: pass %o A374233 r.append(p) %o A374233 used |= ds %o A374233 return r %o A374233 print([an for b in range(2, 13) for an in row(b)]) # _Michael S. Branicky_, Jul 01 2024 %o A374233 (PARI) isok(d, digs) = for (i=1, #d, if (!vecsearch(digs, d[i]), return(1))); %o A374233 row(n) = my(digs=List(), v=List()); forprime(p=2, , my(d = digits(p, n)); if (isok(d, Vec(digs)), listput(v, p); for (i=1, #d, listput(digs, d[i])); listsort(digs, 1); if (#digs == n, return(Vec(v))););); \\ _Michel Marcus_, Jul 02 2024 %Y A374233 Cf. A033274. %K A374233 base,easy,nonn,tabf %O A374233 2,1 %A A374233 _Nicolas Bělohoubek_, Jul 01 2024