cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A374238 Primes whose pattern of identical digits is unique among the primes.

This page as a plain text file.
%I A374238 #99 Nov 03 2024 19:26:37
%S A374238 11,3333311,7771717,11818181,515115551,727722727,887887787,1110011101,
%T A374238 1161611161,1411111441,1411141411,1717117117,1911999919,3311113111,
%U A374238 3313133311,3333353533,5151111551,5555115151,5777777557,7373733337,7747447777,7777111777,8887788787,9199119991,9994449499
%N A374238 Primes whose pattern of identical digits is unique among the primes.
%C A374238 The digit pattern for any natural number n is uniquely defined by the canonical form A358497(n), which enumerates digits according to their position of first occurrence. Each prime in this sequence has a unique digit pattern in the sense that no other prime has the same pattern.
%C A374238 Prime repunits (A004022) are a subsequence, as they are the sole primes with a single distinct digit.
%C A374238 A cryptarithm (alphametic) expresses a digit pattern in letters, where each distinct letter is to map to a distinct digit.
%C A374238 If a cryptarithmetic problem calls for a prime number, then the primes in this sequence are unique solutions, so we call these primes cryptarithmically unique.
%C A374238 The smallest term with 3 distinct digits is 1151135331533311.
%C A374238 The number of terms of length n is given by A376084(n).
%H A374238 Dmytro Inosov, <a href="/A374238/b374238.txt">Table of n, a(n) for n = 1..154</a>
%H A374238 Dmytro Inosov, <a href="/A374238/a374238.txt">Table of n, a(n) for n = 1..24840</a>
%H A374238 Dmytro S. Inosov and Emil Vlasák, <a href="https://arxiv.org/abs/2410.21427">Cryptarithmically unique terms in integer sequences</a>, arXiv:2410.21427 [math.NT], 2024.
%H A374238 Wikipedia, <a href="https://en.wikipedia.org/wiki/Verbal_arithmetic">Verbal arithmetic</a>.
%e A374238 11 is a term since no other prime has the same pattern "AA" of two identical digits (any other AA is divisible by A > 1, hence nonprime).
%e A374238 Counterexample: 13 is not a term since another prime 17 has the same pattern "AB" of two nonidentical digits.
%e A374238 7771717 is a term since it's prime and no other prime has the same pattern "AAABABA".
%t A374238 NumOfDigits = 10; (*Maximal integer length to be searched for*)
%t A374238 A358497[k_] :=
%t A374238   FromDigits[
%t A374238    Table[Mod[
%t A374238      CountDistinct[Take[#, FirstPosition[#, #[[i]]][[1]]]] &[
%t A374238       IntegerDigits[k]], 10], {i, 1, IntegerLength[k]}]];
%t A374238 A006880[MaxLen_] := PrimePi[10^MaxLen];
%t A374238 Extract[Select[
%t A374238    Tally[Table[{#, A358497[#]} &[Prime[i]], {i, 1,
%t A374238        A006880[NumOfDigits]}], #1[[2]] == #2[[2]] &], #[[2]] == 1 &], {All, 1}]
%Y A374238 Cf. A000040 (primes), A004022 (prime repunits), A358497, A039986, A376918, A376084, A376118.
%K A374238 nonn,base
%O A374238 1,1
%A A374238 _Dmytro Inosov_, Jul 01 2024