This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A374244 #27 Nov 16 2024 17:36:57 %S A374244 1,2,5,9,23,43,113,331,698,1966,4072,11433,23701,66734,205712,459632, %T A374244 1348864,2927822,8499580,26809375,61495590,183946295,408179706, %U A374244 1204202538,2643267587,7756962475,24708004563,57390010121,173405214133,389606249120,1160606285961,3738436950162 %N A374244 A Catalan-like sequence formed from the row sums of a Catalan-like triangle where row n is truncated to have ceiling((n+4)*log(3)/log(2)) - (n + 6) terms. %H A374244 Andrew Howroyd, <a href="/A374244/b374244.txt">Table of n, a(n) for n = 1..1000</a> %F A374244 Same as for a normal Catalan triangle T(n,k), read by rows, each term is the sum of the entries above and to the left, i.e., T(n,k) = Sum_{j=0..k} T(n-1,j) where j is limited to the truncated length. %e A374244 Standard Catalan: %e A374244 n Sum Triangle terms %e A374244 1 1 = 1; %e A374244 2 2 = 1, 1; %e A374244 3 5 = 1, 2, 2; %e A374244 4 14 = 1, 3, 5; /5 %e A374244 5 42 = 1, 4, 9, 14; /14 %e A374244 6 132 = 1, 5, 14, 28; /42; 14 %e A374244 7 429 = 1, 6, 20, 48, 90; /132; 132 %e A374244 ... %e A374244 When n=4, number of terms is restricted to 3 dropping 1 term; ceiling((4+4)*log(3)/log(2)) - (4 + 6) = 3. %e A374244 When n=6, number of terms is restricted to 4 dropping 2 terms; ceiling((6+4)*log(3)/log(2)) - (6 + 6) = 4. %e A374244 etc. %e A374244 Truncating at the point indicated by / and summing the remaining triangle terms in the normal way results in: %e A374244 n Sum Truncated Triangle terms %e A374244 1 1 = 1; %e A374244 2 2 = 1, 1; %e A374244 3 5 = 1, 2, 2; %e A374244 4 9 = 1, 3, 5; %e A374244 5 23 = 1, 4, 9, 9; %e A374244 6 43 = 1, 5, 14, 23; %e A374244 7 113 = 1, 6, 20, 43, 43; %e A374244 8 331 = 1, 7, 27, 70, 113, 113; %e A374244 9 698 = 1, 8, 35, 105, 218, 331; %e A374244 10 1966 = 1, 9, 44, 149, 367, 698, 698; %e A374244 11 4072 = 1, 10, 54, 203, 570, 1268, 1966; %e A374244 12 11433 = 1, 11, 65, 268, 838, 2106, 4072, 4072; %e A374244 13 23701 = 1, 12, 77, 345, 1183, 3289, 7361, 11433; %e A374244 ... %o A374244 (PARI) lista(N) = { %o A374244 my(T=vector(N, n, vector(logint(3^(n+4), 2)-n-5))); %o A374244 for(n=1, #T %o A374244 , for(k=1, #T[n] %o A374244 , T[n][k]= if(1==k, 1, k<=#T[n-1], T[n][k-1]+T[n-1][k], T[n][k-1]) %o A374244 ); %o A374244 ); %o A374244 vector(#T, n, vecsum(T[n])); %o A374244 } %Y A374244 Cf. A009766, A000108, Half Catalan A000992. %Y A374244 Cf. A100982 (row sums of A368514). %K A374244 nonn,easy %O A374244 1,2 %A A374244 _Rob Bunce_, Jul 01 2024 %E A374244 a(26) onwards from _Andrew Howroyd_, Oct 25 2024