A374251 Irregular triangle read by rows where row n is the run-compression of the n-th composition in standard order.
1, 2, 1, 3, 2, 1, 1, 2, 1, 4, 3, 1, 2, 2, 1, 1, 3, 1, 2, 1, 1, 2, 1, 5, 4, 1, 3, 2, 3, 1, 2, 3, 2, 1, 2, 1, 2, 2, 1, 1, 4, 1, 3, 1, 1, 2, 1, 2, 1, 1, 3, 1, 2, 1, 1, 2, 1, 6, 5, 1, 4, 2, 4, 1, 3, 3, 2, 1, 3, 1, 2, 3, 1, 2, 4, 2, 3, 1, 2, 2, 1, 2, 1, 3
Offset: 1
Examples
The standard compositions and their run-compressions begin: 0: () --> () 1: (1) --> (1) 2: (2) --> (2) 3: (1,1) --> (1) 4: (3) --> (3) 5: (2,1) --> (2,1) 6: (1,2) --> (1,2) 7: (1,1,1) --> (1) 8: (4) --> (4) 9: (3,1) --> (3,1) 10: (2,2) --> (2) 11: (2,1,1) --> (2,1) 12: (1,3) --> (1,3) 13: (1,2,1) --> (1,2,1) 14: (1,1,2) --> (1,2) 15: (1,1,1,1) --> (1)
Links
Crossrefs
Last column is A001511.
First column is A065120.
Row-lengths are A124767.
Row n has A334028(n) distinct elements.
Rows are ranked by A373948 (standard order).
Row-sums are A373953.
A007947 (squarefree kernel) represents run-compression of multisets.
A066099 lists the parts of compositions in standard order.
A116861 counts partitions by sum of run-compression.
Programs
-
Mathematica
stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse; Table[First/@Split[stc[n]],{n,100}]
Comments