This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A374253 #7 Jul 14 2024 08:54:40 %S A374253 13,22,25,27,29,45,46,49,51,53,54,55,57,59,61,76,77,82,86,89,90,91,93, %T A374253 94,97,99,101,102,103,105,107,108,109,110,111,113,115,117,118,119,121, %U A374253 123,125,141,148,150,153,155,156,157,162,165,166,173,174,177,178 %N A374253 Numbers k such that the k-th composition in standard order matches the patterns (1,2,1) or (2,1,2). %C A374253 Such a composition cannot be strict. %C A374253 The k-th composition in standard order (graded reverse-lexicographic, A066099) is obtained by taking the set of positions of 1's in the reversed binary expansion of k, prepending 0, taking first differences, and reversing again. This gives a bijective correspondence between nonnegative integers and integer compositions. %H A374253 Gus Wiseman, <a href="https://docs.google.com/document/d/e/2PACX-1vTCPiJVFUXN8IqfLlCXkgP15yrGWeRhFS4ozST5oA4Bl2PYS-XTA3sGsAEXvwW-B0ealpD8qnoxFqN3/pub">Statistics, classes, and transformations of standard compositions</a> %F A374253 Equals A335466 \/ A335468. %e A374253 The terms together with their standard compositions begin: %e A374253 13: (1,2,1) %e A374253 22: (2,1,2) %e A374253 25: (1,3,1) %e A374253 27: (1,2,1,1) %e A374253 29: (1,1,2,1) %e A374253 45: (2,1,2,1) %e A374253 46: (2,1,1,2) %e A374253 49: (1,4,1) %e A374253 51: (1,3,1,1) %e A374253 53: (1,2,2,1) %e A374253 54: (1,2,1,2) %e A374253 55: (1,2,1,1,1) %e A374253 57: (1,1,3,1) %e A374253 59: (1,1,2,1,1) %e A374253 61: (1,1,1,2,1) %e A374253 76: (3,1,3) %e A374253 77: (3,1,2,1) %e A374253 82: (2,3,2) %e A374253 86: (2,2,1,2) %e A374253 89: (2,1,3,1) %t A374253 stc[n_]:=Differences[Prepend[Join @@ Position[Reverse[IntegerDigits[n,2]],1],0]]//Reverse; %t A374253 Select[Range[0,100],!UnsameQ@@First/@Split[stc[#]]&] %Y A374253 Permutations of prime indices of this type are counted by A335460. %Y A374253 Compositions of this type are counted by A335548. %Y A374253 The complement is A374249, counted by A274174. %Y A374253 The anti-run case is A374254. %Y A374253 A003242 counts anti-run compositions, ranks A333489. %Y A374253 A011782 counts compositions. %Y A374253 A025047 counts wiggly compositions, ranks A345167. %Y A374253 A066099 lists compositions in standard order. %Y A374253 A124767 counts runs in standard compositions, anti-runs A333381. %Y A374253 A233564 ranks strict compositions, counted by A032020. %Y A374253 A333755 counts compositions by number of runs. %Y A374253 A335454 counts patterns matched by standard compositions. %Y A374253 A335456 counts patterns matched by compositions. %Y A374253 A335462 counts (1,2,1)- and (2,1,2)-matching permutations of prime indices. %Y A374253 A335465 counts minimal patterns avoided by a standard composition. %Y A374253 - A335470 counts (1,2,1)-matching compositions, ranks A335466. %Y A374253 - A335471 counts (1,2,1)-avoiding compositions, ranks A335467. %Y A374253 - A335472 counts (2,1,2)-matching compositions, ranks A335468. %Y A374253 - A335473 counts (2,1,2)-avoiding compositions, ranks A335469. %Y A374253 A373948 encodes run-compression using compositions in standard order. %Y A374253 A373949 counts compositions by run-compressed sum, opposite A373951. %Y A374253 A373953 gives run-compressed sum of standard compositions, excess A373954. %Y A374253 Cf. A106356, A124762, A238130, A238279, A261982, A333175, A333382, A333627, A335463, A335524, A335525. %K A374253 nonn %O A374253 1,1 %A A374253 _Gus Wiseman_, Jul 13 2024