cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A374265 Minimized zeroless factorials.

Original entry on oeis.org

1, 1, 2, 6, 24, 12, 72, 54, 432, 3888, 3888, 42768, 47916, 62298, 872172, 13968, 221688, 57996, 143928, 134712, 269154, 563994, 1247868, 286344, 877356, 171864, 513324, 1252728, 3414474, 914616, 41868, 119178, 454716, 127188, 527832, 15642, 91332, 192924, 125892, 29718
Offset: 0

Views

Author

Bryle Morga, Jul 02 2024

Keywords

Comments

a(n) is the smallest f(n) such that f(0) = 1 and for i > 0, f(i) = OpNoz_i(i*f(i-1)),where OpNoz_i is a function that either removes zeros or keeps the value unchanged (the choice is made for each value of i).
Removing zeros at every i gives an upper bound a(n) <= A243657(n); is this a strict inequality for n >= 12?
Is this sequence bounded?

Examples

			a(12) = 47916 via the path: 1, 1, 2, 6, 24, 12, 72, 504, 4032, 36288, 362880, 3991680, 47916.
		

Crossrefs

Programs

  • Python
    def a(n):
       reach = {1}
       for i in range(1, n+1):
          newreach = set()
          for m in reach:
             newreach.update([m*i, int(str(m*i).replace('0', ''))])
          reach = newreach
       return min(reach)