cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A374267 Perfect squares whose pattern of identical digits is unique among the squares.

Original entry on oeis.org

1444, 7744, 14884, 19881, 29929, 37636, 40401, 44944, 46656, 55696, 66564, 69696, 116964, 133225, 136161, 144400, 166464, 190969, 202500, 219961, 224676, 225625, 261121, 276676, 277729, 300304, 339889, 407044, 438244, 473344, 511225, 525625, 544644, 553536, 555025, 556516, 585225
Offset: 1

Views

Author

Dmytro Inosov, Jul 02 2024

Keywords

Comments

The digit pattern for any natural number n is uniquely defined by the canonical form A358497(n), which enumerates digits in order of their first occurrence in n, from left to right.
Each perfect square in this sequence has a unique digit pattern in the sense that no other square has the same pattern.
A cryptarithm (alphametic) expresses a digit pattern in letters, where each distinct letter is to map to a distinct digit.If a cryptarithmetic problem calls for a perfect square, then the squares in this sequence are unique solutions, so we call them cryptarithmically unique.

Examples

			The first cryptarithmically unique square is 38^2=1444. This means that no other square has the same digit pattern "ABBB".
Counterexample: 144=12^2 is not in this sequence because 400=20^2 is also a perfect square with the same digit pattern "ABB". Equivalently, A358497(144)=A358497(400)=122.
The alphametic puzzle SEA^2 = BIKINI has a solution 437^2 = 190969 (K=0, B=1, E=3, S=4, N=6, A=7, I=9). This solution is unique because 190969 is a term in this sequence.
		

Crossrefs

Subsequence of A000290 (squares).
Cf. A374268 (bases of cryptarithmically unique squares).
Cf. A374238 (cryptarithmically unique primes).

Programs

  • Mathematica
    NumOfDigits = 4; (* Maximal integer length to be searched for *)
    A358497[k_] := With[{pI = Values@PositionIndex@IntegerDigits@k}, MapIndexed[#1 -> Mod[#2[[1]], 10] &, pI, {2}] // Flatten // SparseArray // FromDigits];
    Extract[Extract[Select[Tally[Table[{#, A358497[#]} &[i^2], {i, 1, 10^NumOfDigits - 1}], #1[[2]] == #2[[2]] &], #[[2]] == 1 &], {All, 1}], {All, 1}]

Formula

a(n) = A374268(n)^2.