A374267 Perfect squares whose pattern of identical digits is unique among the squares.
1444, 7744, 14884, 19881, 29929, 37636, 40401, 44944, 46656, 55696, 66564, 69696, 116964, 133225, 136161, 144400, 166464, 190969, 202500, 219961, 224676, 225625, 261121, 276676, 277729, 300304, 339889, 407044, 438244, 473344, 511225, 525625, 544644, 553536, 555025, 556516, 585225
Offset: 1
Examples
The first cryptarithmically unique square is 38^2=1444. This means that no other square has the same digit pattern "ABBB". Counterexample: 144=12^2 is not in this sequence because 400=20^2 is also a perfect square with the same digit pattern "ABB". Equivalently, A358497(144)=A358497(400)=122. The alphametic puzzle SEA^2 = BIKINI has a solution 437^2 = 190969 (K=0, B=1, E=3, S=4, N=6, A=7, I=9). This solution is unique because 190969 is a term in this sequence.
Links
- Wikipedia, Verbal arithmetic.
Crossrefs
Programs
-
Mathematica
NumOfDigits = 4; (* Maximal integer length to be searched for *) A358497[k_] := With[{pI = Values@PositionIndex@IntegerDigits@k}, MapIndexed[#1 -> Mod[#2[[1]], 10] &, pI, {2}] // Flatten // SparseArray // FromDigits]; Extract[Extract[Select[Tally[Table[{#, A358497[#]} &[i^2], {i, 1, 10^NumOfDigits - 1}], #1[[2]] == #2[[2]] &], #[[2]] == 1 &], {All, 1}], {All, 1}]
Formula
a(n) = A374268(n)^2.
Comments