A374290 7-rough powerful numbers: numbers k coprime to 30 such that if a prime p divides k then p^2 also divides k.
1, 49, 121, 169, 289, 343, 361, 529, 841, 961, 1331, 1369, 1681, 1849, 2197, 2209, 2401, 2809, 3481, 3721, 4489, 4913, 5041, 5329, 5929, 6241, 6859, 6889, 7921, 8281, 9409, 10201, 10609, 11449, 11881, 12167, 12769, 14161, 14641, 16129, 16807, 17161, 17689, 18769
Offset: 1
Links
- Amiram Eldar, Table of n, a(n) for n = 1..10000
- Eric Weisstein's World of Mathematics, Rough Number.
- Index entries for sequences related to powerful numbers.
Crossrefs
Programs
-
Mathematica
powQ[n_] := n == 1 || AllTrue[FactorInteger[n][[;; , 2]], # > 1 &]; Select[Range[20000], CoprimeQ[#, 30] && powQ[#] &]
-
PARI
is(k) = gcd(k, 30) == 1 && ispowerful(k);
Formula
Sum_{n>=1} 1/a(n) = 80*zeta(2)*zeta(3)/(147*zeta(6)) = (80/147) * A082695 = 1.05773955745... .
In general, the sum of reciprocals of the p-rough powerful numbers is (zeta(2)*zeta(3)/zeta(6)) * Product_{prime q < p} ((q-1)*q/(q^2-q+1)).
Comments