This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.
%I A374291 #16 Sep 11 2024 00:35:02 %S A374291 1,16,64,81,256,625,729,1024,1296,2401,4096,5184,6561,10000,11664, %T A374291 14641,15625,16384,20736,28561,38416,40000,46656,50625,59049,65536, %U A374291 82944,83521,104976,117649,130321,153664,160000,186624,194481,234256,250000,262144,279841,331776 %N A374291 Squares of powerful numbers. %C A374291 First differs from A340588 at n = 12. %C A374291 4-full (or 3-full) squares. %C A374291 Numbers whose exponents in their prime factorization are all even numbers >= 4. %C A374291 This sequence is closed under multiplication. %C A374291 The sequence {A000290(n)*A078615(A000290(n)), n>=1} is a permutation of this sequence, and the sequence {a(n)/A078615(a(n)), n>=1} is a permutation of {A000290(n), n>=1}. %C A374291 The sequence {A335988(n)*A007947(A335988(n)), n>=1} is a permutation of this sequence, and the sequence {a(n)/A007947(a(n)), n>=1} is a permutation of A335988. %H A374291 Amiram Eldar, <a href="/A374291/b374291.txt">Table of n, a(n) for n = 1..10000</a> %H A374291 <a href="/index/Pow#powerful">Index entries for sequences related to powerful numbers</a>. %F A374291 a(n) = A000290(A001694(n)) = A001694(n)^2. %F A374291 Sum_{n>=1} 1/a(n) = Product_{p prime} (1 + 1/(p^2*(p^2-1))) = zeta(4)*zeta(6)/zeta(12) = 15015/(1382*Pi^2) = 1.10082313486953808844... . %F A374291 Sum_{n>=1} 1/a(n)^s = Product_{p prime} (1 + 1/(p^(2*s)*(p^(2*s)-1))) = zeta(4*s)*zeta(6*s)/zeta(12*s), for s > 1/4. %t A374291 powQ[n_] := n==1 || AllTrue[FactorInteger[n][[;; , 2]], # > 1 &]; Select[Range[600], powQ]^2 %o A374291 (PARI) is(k) = issquare(k) && ispowerful(sqrtint(k)); %o A374291 (Python) %o A374291 from math import isqrt %o A374291 from sympy import mobius, integer_nthroot %o A374291 def A374291(n): %o A374291 def squarefreepi(n): %o A374291 return int(sum(mobius(k)*(n//k**2) for k in range(1, isqrt(n)+1))) %o A374291 def bisection(f, kmin=0, kmax=1): %o A374291 while f(kmax) > kmax: kmax <<= 1 %o A374291 while kmax-kmin > 1: %o A374291 kmid = kmax+kmin>>1 %o A374291 if f(kmid) <= kmid: %o A374291 kmax = kmid %o A374291 else: %o A374291 kmin = kmid %o A374291 return kmax %o A374291 def f(x): %o A374291 c, l = n+x, 0 %o A374291 j = isqrt(x) %o A374291 while j>1: %o A374291 k2 = integer_nthroot(x//j**2, 3)[0]+1 %o A374291 w = squarefreepi(k2-1) %o A374291 c -= j*(w-l) %o A374291 l, j = w, isqrt(x//k2**3) %o A374291 c -= squarefreepi(integer_nthroot(x, 3)[0])-l %o A374291 return c %o A374291 return bisection(f,n,n)**2 # _Chai Wah Wu_, Sep 10 2024 %Y A374291 Intersection of A000290 and A036967 (or A036966). %Y A374291 Intersection of A000290 and A337050. %Y A374291 Subsequence of A322449. %Y A374291 Cf. A000290, A001694, A007947, A078615, A335988, A340588. %K A374291 nonn,easy %O A374291 1,2 %A A374291 _Amiram Eldar_, Jul 02 2024