cp's OEIS Frontend

This is a front-end for the Online Encyclopedia of Integer Sequences, made by Christian Perfect. The idea is to provide OEIS entries in non-ancient HTML, and then to think about how they're presented visually. The source code is on GitHub.

A374295 a(n) is the smallest positive integer k such that A096936(k) = n.

This page as a plain text file.
%I A374295 #36 Jul 03 2024 13:06:10
%S A374295 1,7,4,91,2401,28,117649,1729,196,31213,282475249,364,13841287201,
%T A374295 1529437,9604,53599,33232930569601,2548,1628413597910449,593047,
%U A374295 470596,3672178237,3909821048582988049,6916,68574961,179936733613,33124,29059303,459986536544739960976801,124852
%N A374295 a(n) is the smallest positive integer k such that A096936(k) = n.
%C A374295 a(n) is the smallest positive integer k such that A033716(k) = 2*n,
%F A374295 If p is prime, a(p) = 7^(p-1).
%F A374295 a(n) is divisible by 7 for n > 3.
%e A374295    n        |        a(n)
%e A374295 ------------+-------------------------------------
%e A374295    2        |            7.
%e A374295    3 = 3*1  |            4.
%e A374295    4        |           91 =     7 * 13.
%e A374295    5        |         2401 =     7^4.
%e A374295    6 = 3*2  |           28 = 4 * 7.
%e A374295    7        |       117649 =     7^6.
%e A374295    8        |         1729 =     7 * 13 * 19.
%e A374295    9 = 3*3  |          196 = 4 * 7^2.
%e A374295   10        |        31213 =     7^4 * 13.
%e A374295   11        |    282475249 =     7^10.
%e A374295   12 = 3*4  |          364 = 4 * 7 * 13.
%e A374295   13        |  13841287201 =     7^12.
%e A374295   14        |      1529437 =     7^6 * 13.
%e A374295   15 = 3*5  |         9604 = 4 * 7^4.
%e A374295   16        |        53599 =     7 * 13 * 19 * 31.
%e A374295   17        |                    7^16.
%e A374295   18 = 3*6  |         2548 = 4 * 7^2 * 13.
%e A374295   19        |                    7^18.
%e A374295   20        |       593047 =     7^4 * 13 * 19.
%e A374295   21 = 3*7  |       470596 = 4 * 7^6.
%e A374295   22        |   3672178237 =     7^10 * 13.
%e A374295   23        |                    7^22.
%e A374295   24 = 3*8  |         6916 = 4 * 7 * 13 * 19.
%e A374295   25        |     68574961 =     7^4 * 13^4.
%e A374295   26        | 179936733613 =     7^12 * 13.
%e A374295   27 = 3*9  |        33124 = 4 * 7^2 * 13^2.
%e A374295   28        |     29059303 =     7^6 * 13 * 19.
%e A374295   29        |                    7^28.
%e A374295   30 = 3*10 |       124852 = 4 * 7^4 * 13.
%Y A374295 Cf. A033716, A096936, A343771.
%K A374295 nonn
%O A374295 1,2
%A A374295 _Seiichi Manyama_, Jul 02 2024