A374297 Number of growing self-avoiding walks of length n on a half-infinite strip of height 3 with a trapped endpoint.
1, 2, 2, 6, 10, 20, 41, 79, 146, 285, 538, 1039, 1982, 3812, 7272, 13961, 26686, 51161, 97865, 187518, 358835, 687327, 1315616, 2519472, 4823116, 9235610, 17681264, 33855310, 64817361, 124105590, 237610012, 454943624, 871035486, 1667726103, 3193049603
Offset: 4
Examples
The a(4) = 1 and a(5) = 2 walks are: *--* * *--* * * * * | | | *--* * * * * *--*--* | | | | * * *--* * * *--* The GSAW below has length 10. *--*--* * * * | *--* *--* * * | | | * *--*--* * *
Links
- Jay Pantone, A. R. Klotz, and E. Sullivan, Exactly-solvable self-trapping lattice walks. II. Lattices of arbitrary height., arXiv:2407.18205 [math.CO], 2024.
- Index entries for linear recurrences with constant coefficients, signature (1,2,0,0,-1,2,-4,-3,-2,0,-4,-4).
Crossrefs
Cf. A078528.
Formula
G.f.: x^4*(1 + x - 2*x^2 - x^5 + x^6 - 2*x^8 - 5*x^9 - 5*x^10 - 2*x^11 - 2*x^12)/((1 + x^4)*(1 - 2*x^2)*(1 - x - 2*x^3 - x^4 - 2*x^5 - 2*x^6)).
Comments