A374298 Number of growing self-avoiding walks with displacement n on a half-infinite strip of height 3 with a trapped endpoint.
2, 10, 40, 148, 526, 1828, 6256, 21190, 71260, 238432, 794914, 2643352, 8773684, 29082010, 96303640, 318678388, 1053993646, 3484654468, 11517602176, 38060746390, 125756057260, 415464635392, 1372477613794, 4533688494712, 14975452784164, 49464657237610
Offset: 1
Keywords
Examples
The a(1) = 2 walks are: *--* * *--* * | | | *--* * * * * | | * * * *--* *
Links
- Jay Pantone, A. R. Klotz, and E. Sullivan, Exactly-solvable self-trapping lattice walks. II. Lattices of arbitrary height., arXiv:2407.18205 [math.CO], 2024.
Formula
G.f.: (-2*x*(x+1)*(x^3+x-1))/((x^2+2*x-1)*(x^2+3*x-1)).
Comments