A374299 Number of growing self-avoiding walks of length n on a half-infinite strip of height 4 with a trapped endpoint.
3, 2, 9, 8, 36, 45, 153, 235, 658, 1095, 2760, 4994, 11757, 22415, 50587, 99631, 218605, 439382, 947346, 1929565, 4113065, 8450088, 17879748, 36937722, 77783590
Offset: 5
Examples
The a(5) = 3 walks are: *--* * * * * * * * | *--* * *--* * * * * | | | * * * * * * *--*--* | | | | * * * *--* * * *--*
Links
- Jay Pantone, A. R. Klotz, and E. Sullivan, Exactly-solvable self-trapping lattice walks. II. Lattices of arbitrary height., arXiv:2407.18205 [math.CO], 2024.
Crossrefs
Cf. A078528.
Formula
G.f.: ((12*x^39 + 14*x^38 - 20*x^37 - 18*x^36 - 45*x^35 - 12*x^34 + 107*x^33 - 38*x^32 + 3*x^31 - 49*x^30 - 38*x^29 + 242*x^28 - 11*x^27 - 66*x^26 - 181*x^25 - 144*x^24 + 246*x^23 + 91*x^22 + 72*x^21 - 208*x^20 - 150*x^19 + 98*x^18 + 57*x^17 + 143*x^16 - 74*x^15 + 5*x^14 - 21*x^13 + 28*x^12 - 17*x^11 - 55*x^10 - 17*x^9 + 22*x^8 + 45*x^7 + 10*x^6 - 19*x^5 - 21*x^4 + 3*x^3 + 7*x^2 + 4*x - 3)*x^5)/((2*x^19 + 2*x^18 - 7*x^17 - 6*x^16 + 5*x^15 + 8*x^14 + 7*x^13 - 17*x^12 - 8*x^11 + 3*x^10 + 10*x^9 + 3*x^8 - 8*x^7 + 2*x^6 - x^5 + 6*x^4 - 3*x^3 - 2*x + 1)*(4*x^20 - 2*x^18 - 5*x^16 + 8*x^14 - x^12 + 2*x^10 - 4*x^8 + 2*x^6 + 3*x^4 - 4*x^2 + 1)).
Comments