A374300 Number of growing self-avoiding walks with displacement n on a half-infinite strip of height 4 with a trapped endpoint.
5, 44, 330, 2231, 14234, 87670, 526549, 3105097, 18061476, 103955447, 593388315, 3364743202, 18977238539, 106562551704, 596209056866, 3325672377580, 18503794814297, 102734584002260, 569364274759972, 3150649232873918, 17411856639412771, 96118767225465184
Offset: 1
Examples
The a(1) = 5 walks are: *--* * *--* * *--* * * * * *--* * | | | | | | *--* * * * * *--* * *--* * * * * | | | | | | | * * * *--* * *--* * * * * * * * | | | | | * * * * * * *--* * *--* * *--* *
Links
- Jay Pantone, A. R. Klotz, and E. Sullivan, Exactly-solvable self-trapping lattice walks. II. Lattices of arbitrary height., arXiv:2407.18205 [math.CO], 2024.
Formula
G.f.: (-(11*x^12+4*x^11-138*x^10+205*x^9+119*x^8-552*x^7+485*x^6-93*x^5-112*x^4+132*x^3-85*x^2+31*x-5)*x)/((x^6+2*x^5-9*x^4-5*x^3+15*x^2-8*x+1)*(2*x^5+3*x^4-7*x^3+12*x^2-7*x+1)).
Comments