A374301 Number of growing self-avoiding walks of length n on a half-infinite strip of height 5 with a trapped endpoint.
2, 3, 8, 13, 32, 69, 161, 361, 845, 1846, 4241, 9132, 20791, 44908, 101361, 220149, 493710, 1076528, 2401244, 5248819, 11659368, 25531485, 56546077, 123976603, 274020536, 601294678, 1327099050, 2913847433, 6424359845, 14111695015, 31089757238, 68312316581
Offset: 5
Keywords
Examples
The a(5) = 2 walks are: > * * * * * * > > * * * * * * > > *--* * * * * > | | > * * * *--*--* > | | | > *--* * * *--*
Links
- Jay Pantone, generating function
- Jay Pantone, A. R. Klotz, and E. Sullivan, Exactly-solvable self-trapping lattice walks. II. Lattices of arbitrary height., arXiv:2407.18205 [math.CO], 2024.
Formula
See Links section for generating function.
Comments