A374302 Number of growing self-avoiding walks with displacement n on a half-infinite strip of height 5 with a trapped endpoint.
11, 172, 2329, 28130, 318086, 3454914, 36484161, 377467377, 3845503176, 38709658128, 385953901159, 3818368690421, 37534770596896, 366993128166171, 3571984859121359, 34631980574240256, 334654089341585090, 3224481296529386602, 30990605791226254096
Offset: 1
Keywords
Examples
Five of the a(1) = 11 walks are: *--* * *--* * *--* * * * * *--* * | | | | | | | | * * * * * * * * * * * * * * * | | | | | | *--* * * * * *--* * *--* * * * * | | | | | | | * * * *--* * *--* * * * * * * * | | | | | * * * * * * *--* * *--* * *--* *
Links
- Jay Pantone, Alexander R. Klotz, and Everett Sullivan, Exactly-solvable self-trapping lattice walks. II. Lattices of arbitrary height., arXiv:2407.18205 [math.CO], 2024.
Formula
G.f.: (x*(970*x^26 + 16189*x^25 + 76977*x^24 + 107296*x^23 - 167471*x^22 - 441374*x^21 + 302374*x^20 + 825566*x^19 - 591839*x^18 - 531077*x^17 + 861370*x^16 - 734832*x^15 - 170227*x^14 + 1369959*x^13 - 918040*x^12 - 622581*x^11 + 986287*x^10 - 181528*x^9 - 333951*x^8 + 247985*x^7 - 57814*x^6 - 11881*x^5 + 13594*x^4 - 5279*x^3 + 1221*x^2 - 169*x + 11))/((3*x^14 + 23*x^13 + 74*x^12 + 130*x^11 - 118*x^10 - 96*x^9 - 260*x^8 + 362*x^7 + 500*x^6 - 650*x^5 - 27*x^4 + 237*x^3 - 105*x^2 + 18*x - 1)*(28*x^11 + 50*x^10 - 48*x^9 - 112*x^8 + 140*x^7 + 151*x^6 - 209*x^5 - 17*x^4 + 66*x^3 - 45*x^2 + 13*x - 1)).
Comments